
-11 97 AN 000 (~OBJECT-ORIENTED DESIGN) PARADIGM FOR FLIGHT? 1/1
SIMULATORS (U) CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTNARE ENGINEERING INST K J LEE ET RL DEC 87

UNCLASSIFIED CRU/SEI-87-TR-42 ESD-TR-87-206 F t/2 UEE~IEIIEEII
I E!h.hhh
I lflflfllll.ll.l
llllllhEEllllE
//EI/////////IE
IIIIIIIIIIIIIIfllfll~f
ElllEEElh~lEEE

111111.0.0%~l~L3 2

'.l-i- -1111-w- liii,-

I

%II1111IIII? 1109 F YN I IP)I 111 'l 011g
.. tm M 0 6& E Ml 6e.& 6 S 0 0 S S S

Technical Report rme FI. E QOPY
CMU/SEI-87.TR-43 -

1, ESD-TR-87-206
0

An OOD Paradigm for Flight
Simulators

Kenneth J. Lee
Michael S. Rissman

Richard D'Ippolito
Charles Plinta

AL :Roger Van Scoy

December 1987 DTIC
ELECT-
FEB 0 5 1988

A 882 2107.

J;0. 'P.

" Technical Report
CMU/SEI-87-TR-43

ESD-TR-87-206
December 1987

An OOD Paradigm for Flight
Simulators

Kenneth J. Lee
Michael S. Rissman
Richard D'Ippolito

Charles Plinta
Roger Van Scoy

Dissemination of Ada Software Engineering Technology

coession For

DTIC TAB 2

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

* - Pittsburgh, Pennsylvania 15213

&0.

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
S SEI Joint Program Office

This work was sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical

b. Information Center, Atn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161

Table of Contents

1. Introduction 1
1.1. Background 1
1.2. Motivation 1

.~..1.3. Characteristics of the Application Domain 2
1.4. Reader's Guide 3

2. Approach 4
2.1. History 4
2.2. Design Goals 5

a2.3. Evolution of the Paradigm 6
3. Concepts Used by the Paradigm 7

3.1. Overview of the Software Architecture 8
.~-%3. 1.1. The Executive Level 8

3.1.2. System Level 9

4. Paradigm Description 11
4. 1. Engine Parts Description 11
4.2. Object Abstraction 13

4.2.1. Object Managers 14
4.2.2. Object Manager Structure 1

Y4.2.3. Object Manager Operations 15
* '4.2.4. Advantages of the Object Abstraction 18

4.3. Connection Abstraction 18
4.3.1. Overview of Connections 18

44.3.2. Procedural Abstraction 19
64.3.2.1. Get Needed Information 20

4....Covr norain2

4.3.2.2.Pu Convert Information 20

4.3.3. Advantages of Connections 22
4.4. Subsystems and Systems 22

4.4. 1. Subsystem Aggregates 23
4.4. 1. 1. Building an Aggregate 23

4 CMU/SEI.87.TR-43 i

4.4.2. Updating 24

4.4.3. Advantages of Subsystems and Systems 26

4.5. Executives 27
4.5.1. Implementation of an Executive 27
4.5.2. Advantages of Executives 29

4.6. Advantages of the Architecture of the Paradigm 29

5. Development Process 32

5. 1. Role of the Paradigm 32

5.2. Templates and Reuse 32
5.2.1. Diagram Parsers 34

5.3. Enhancements to Object/Connection Diagrams 34

6. Open Issues 35
6. 1. Distributed Processing 35

6.2. Tuning 36

6.3. Reposition and Flight Freeze 37

7. Electrical System 38
7.1. Additional Concepts 38

Appendix A. Software Architecture Notation 40

Appendix B. Object Manager Template 45

Appendix C. Engine code 55

C.1. Package GlobalTypes 55
C.2. Package StandardEngineeringTypes 56

C.3. Package BleedValveObject_ Manager 57
C.4. Package BurnerObjectManager 60
C.5. Package DiffuserObjectManager 63
C.6. Package Exhaust.ObjectManager 65

C.7. Package FanDuct,_Object_Manager 68
C.8. Package Rotorl_ObjectManager 70
C.9. Package Rotor2Object._Manager 73

C.10. Package FlightSystems 78
C. 11. Package body Flight-Systems 79

S. C.12. Package Flight_SubsystemNames 80

C.13. Package Flight_SystemsConnection.Manager 81
C.14. Package body Flight_SystemsConnection.Manager 83

C. 15. Separate Procedure body Process_Engine_ConnectionsTo 84

C. 16. Separate Procedure body Process_PowerConnectionsTo 87
C. 17. Package EngineUpdater 88

C. 18. Package body EngineUpdater 89

O ii CMU/SEI-87-TR-43

C.19. Package Engine-Aggregate 92

C.20. Package SystemPowerUpdater 94

7.

-.

4

, M/SI87T-4 i

U"PC - e 4 ~N~

L

List of Figures

Figure 2-1: Object Dependency Example 6
Figure 3-1: Software Architecture Example 8
Figure 3-2: Executive Level Architecture 9
Figure 3-3: Connection Manager Architecture 10
Figure 3-4: System Level Architecture 10

. Figure 4-1: Turbofan Engine Dependency Diagram 12
" Figure 4-2: Burner Object Manager 16
" Figure 4-3: Spark Conversion Routine 21

Figure 4-4: Engine Representation Example 23
Figure 4-5: Engine Aggregate Example 25
Figure 4-6: Reference to an Engine Object using the Aggregate 26

-. Figure 4-7: Executive Activity Table Example 27
Figure 4-8: Flight Executive Example 28
Figure 4-9: Executive Connection Procedure Example 29

. Figure 4-10: Communicating with a Data Transfer Buffer 29
Figure 5-1: Object Manager Template Example 33
Figure A-I: Object, Subsystem and Dependency Notation 41
Figure A-2: Package Notation 42
Figure A-3: Subprogram Notation 43
Figure A-4: Task Notation 44

V.-

iv CMU/SEI-87-TR-43j6.SL%.', Al A

..

1. Introduction

1.1. Background
This report presents a paradigm for object-oriented implementations of flight

simulators. It is a result of work on the Ada Simulator Validation Program (ASVP) carrie I
out by members of the technical staff at the Software Engineering Institute (SEI).

1.2. Motivation

Object-oriented design predominates discussions about Ada-based software engineer-
ing. The identification of objects and the implementation of objects are two separate issues.
This paradigm is a model for implementing systems of objects. The objects are described in a
form of specification called an object dependency diagram.1 The paradigm is not about how
to create the specification.

Although much has been written on object-oriented design, SEI project members could
find no examples of object-oriented implementations relevant to flight simulators. Examples
were required for two reasons. First, object-orientation was new to both of the contractors on
the ASVP. A methodology which leads to a specification of objects is useful only if developers
know how to implement what is specified. Second, managers were skeptical about the bene-
fits of object-oriented design. Examples were needed to determine whether benefits out-
weigh costs.

The intent of our work was to produce examples of object-oriented systems. It was not
our intent to determine whether object-oriented design was best for flight simulators. 2

',p

'See Chapter 4 and Figure 4-1 for an example of an object dependency diagram.

V' 2 See Section 2.1 for some historical motivation.

* 6 CMU/SEI-87-TR-43

1.3. Characteristics of the Application Domain

The paradigm was developed for a specific application domain, namely flight
% simulators and training devices. This section puts the paradigm in context by briefly de-

scribing the relevant features of the application domain.

The objective of a flight simulator is to reproduce on the ground the behavior of an
aircraft in flight. Simulators are used to

" train aircrew,

" train maintainers of aircraft, and

"aid designers of aircraft.

A training simulator consists of a mock-up of stations for the aircrew being trained.
The mock-up contains the controls available to manipulate the aircraft and systems for cuing
the operator to the aircraft's response to his actions. Cues include gauges, video, sound, and
motion.

The training mission is set by an instructor at an Instructor Operator Station (IOS).
Some of the factors set by the instructor are longitude, latitude, altitude, and atmospheric
conditions. They also affect the behavior of the simulator by introducing airciraft malfunc-
tions.

The ASVP focused on software that models the behavior of major systems affecting an
aircraft's flight: the airframe, the engines, the electrical system, the fuel system, the
hydraulic system, and others.

Traditionally, this software is put under the control of an executive which periodically
updates systems. Flight simulators are not event-driven. Interaction between systems in
the real aircraft are continuous. Simulators model those interactions in discrete time.

Time constraints are normally tighter than memory constraints. Multiple processors
are used to distribute processing and to link the software to hardware in the aircrew training
station. Trends are such that multi-processor architectures are becoming more prevalent in
the domain.

Flight simulators are long-lived and frequently modified. The two major causes of
modification are modifications to the aircraft itself and changes in the training missions.

6 Typical of the latter is the simulation of new malfunctions.

craft components in the actual aircraft. The ultimate test of the simulator is the way it feels
to ircew xpeiened iththe aircraft being simulated. The process of tuning the feel of
thesimlatr i caledairrewtuning.

Flight siuaosprovide natural opportunities for reusing software. First, different

2 CMU/SEI-87-TP-43

I,^ VW V-l INWW' k; %*K,% V"V1,

aircraft have the same kinds of components, e.g., engines, fuel systems, electrical systems,
etc. Sometimes a particular instance of a kind of component, a Pratt and Whitney engine for
example, is used on a variety of aircraft. Second, the three classes of simulators-training,

maintenance, and engineering-model the same components to varying degrees of fidelity.
Third, a simulator is made up of systems that can be viewed identically at some level of

* abstraction.

1.4. Reader's Guide

This report contains the work completed to date, presents the paradigm, and discusses
the advantages of the paradigm. It is meant to stand on its own merits. The model we have
developed solves a specific set of problems. We do not claim it to be the only model for
solving these problems. The paradigm uses many of the characteristic software engineering
concepts, but the report is not intended to be a report on software engineering theory.3

The next chapter discusses our approach to developing the paradigm and how we as-
* ~ sessed the fit of our solution to the problem at hand.

Chapter 3
introduces the conceptual elements of the paradigm and provides an overview of the
software structure implied by the paradigm.

Chapter 4
presents a detailed view of the elements of the paradigm. The elements are presented
bottom-up using an Engine system as an example. Each section on a particular ele-
ment ends with a discussion of the benefits of the implementation chosen for the para-

* digm. The final section of Chapter 4 summarizes the benefits of the paradigm.

Chapter 5
discusses the role of a paradigm in the development process.

Chapter 6
discusses issues which we have thought about during the development but have not
had time to fully address.

Chapter 7
is a very brief presentation of a simulator Electrical system.

SIN Appendix A
describes a modified form of the notation expounded on by Grady Booch in his book on
software engineering with Ada [1i] and his book on reusable software components with
Ada [2]. The notation is used in the diagrams in Chapter 3.

Appendix B
contains an object manager template. The use of reusable code templates is discussed

6. in Chapter 5.
Appendix C

presents a version of the Engine system code complete through the package specifi-
cations. The intent is to demonstrate the software architecture defined by the object
paradigm discussed in Chapter 4.

3
1f the audience perceives that this report would be useful within a tutorial on software enigineering, we invite

such a use of the report.

SCMU/SEI-87-Tft-43 3

% % %i

2. Approach

2.1. History

The project team began the search for a paradigm after reviewing an implementation
of an electrical system done by one of the contractors on the ASVP. The implementation was

more data-oriented than object-oriented. The implementation was a definite improvement

over the original FORTRAN implementation. However, the team did not consider the imple-
mentation to be exemplary.

The project team decided to spend what it thought would be no more than a month or

two developing an example of a pure object-oriented design of an electrical system. A circuit

diagram was used to identify the objects and the relationships among the objects. The be-
havior of the objects, e.g., circuit breakers, relays, and batteries, and of circuits in general,
was well understood.

Material available to us on object-oriented design did not adequately address connec-

tions among objects or updating systems of objects in discrete time.

The project team implemented an object-oriented electrical system which came close to

satisfying the goals described below. At that time one of the contractors on the ASVP asked

the project team to sketch out an object-oriented implementation of an engine. The team
observed that the object-oriented implementation of an engine and of an electrical system

were identical at some level of abstraction.

The project team decided to capture the similarities in a paradigm for object-oriented

systems. The paradigm was to dictate how an object-oriented specification would be imple-
mented in software and how the update of systems would be controlled. The drive to gener-

alize uncovered flaws in our designs of both the engine system and the electrical system. 4

The project team did not develop the paradigm methodically. We were not interested
in testing design methods. Our goal was to produce a paradigm for object-oriented systems.
We did not want to limit our search space to architectures produced by known methods.

4 CMU/SEI-87-TR-43

% %s

2.2. Design Goals

The project team began with two basic goals. One was to eliminate nested impiemen-
tations of objects. The other was to simplify dependencies among objects.

Nested objects result from decompositional approaches that purport to help the desig-
ner discover which objects are needed to implement a system. For example, the designer

begins with the notion of an engine as a black box. All interfaces to the engine appear at the
surface of the black box. Now, suppose the vibration of an engine compressor needs to be
metered. The designer decides to decompose the engine into other objects, one of which is a

- compressor. Access to the vibration level of the compressor passes through two levels: the

engine level and the compressor level. Further, decomposition might lead to modeling each
- stage of the compressor as an object, thus adding a third layer to the nested object. Finally,

black box implementations require knowledge of the entire black box, even when only one
state or aspect of the black box is used.

Nested, hierarchical objects do have advantages. First, it should be possible to update
* a composite object, such as an engine, as if it were a black box. Second, it should be possible

to reuse an object, such as an engine, as a separate entity.

Figure 2-1 shows a dependency between objects A and B. In this example, B provides A
* with something.4 Thus the state of A depends on the state of B.5 One common solution is to

have the implementation of object A with object B. When A is updated, A reads the relevant

% state of B. This solution does not work if B and A are on separate processors. Even if A and

% B are on the same processor, the dependencies for devices as complex as flight simulators are

-' complicated themselves. Also, it is never clear which object should define the dependent

data type.

Another common solution is to have object B call object A and report its state. This

solution introduces a new problem without solving the problem mentioned above. If the flow
between B and A is continuous, then it is unnatural for object B to model discrete time by
controlling the rate at which A is updated. Further, if B and A are part of a closed feedback

* loop, the update cycles indefinitely.

- The major problems with the solutions discussed above involve the fact that objects in
flight simulators interact through real-world entities, such as wires and pipes. The real-

.j ~world connections are typically not modeled in software. Instead they are subsumed by
procedure calls embodied in one of the objects.

* 'The same diagrammatic notation is used throughout this report. The dependent object is at the tail of the arrow.
It depends on something from the object at the head of the arrow.

S1n Ada, an object which depends on another, separately compiled object, uses the with clause to gain visibility of
the dependent object. The object is said to with the dependent object.

* CMU/SEI-87-TR-435

% %

V- F VIT T T TI T T ,Rw V 77 .-
u7.-

Object A Object B

Figure 2-1: Object Dependency Example

2.3. Evolution of the Paradigm

Designers talk about the fit of a design to its context, the problem space. The criteria
for assessing the fit of solutions to complex problems often can be determined only in re-
sponse to a proposed solution and cannot be determined before solutions are generated. Such
was the case for the paradigm.

Our team began with intuitive feelings about the standard goals of software engineer-
ing-, goals such as modularity, ease of enhancement, and reuse. The paradigm passed
through four or five iterations within the team. Each iteration left a legacy of criteria for
assessing the fit of the solution for the paradigm.

For example, the model for object managers 6 and the means for connecting objects
surfaced in the first version of the paradigm. The objects stood alone, and were not depend-
ent on Ada types declared elsewhere. This enhanced the reusability of the object managers
and facilitated independent development. The means for connecting objects had an intuitive

* analog in the real-world. Pipes and wires, connecting objects in the world, are as real as the
objects themselves and should not be subsumed in software by the implementations of the
objects.

In addition, the number of concepts was minimized. Those objects which had no
* analog in the physical world were removed.

The chapters which follow discuss the advantages of the paradigm. We did not set out
to obtain these advantages. The advantages revealed themselves as the work progressed.
An advantage which revealed itself in one iteration was retained as a criterion for evaluating
the fit of subsequent iterations.

OObject managers are introduced in Chapter 4.

6 CMU/SEI-87-TR-43

q 3. Concepts Used by the Paradigm

This chapter provides a brief description of some of the concepts introduced with the
paradigm and a high level overview of the software architecture defined within the para-
digm. The concepts are further elaborated in Chapter 4.

The paradigm described in this report begins with the notion of an executive. An
executive controls the update of a set of systems compiled together running on a single
processor. The paradigm assumes that there will be more than one set of systems and that
multiprocessing will be involved.

Communication between executives is handled by an abstraction called a buffer. A
buffer is some means of sharing data among separately compiled software.7 The paradigm
makes no assumption about how the operating system transfers data or how executives on
separate processors are invoked.

The fundamental units of the paradigm are objects and connections. Objects map to

real-world entities. An object is implemented as a math model that maps the environmental
effects on the object to the object's outputs, given the attributes of the object and its opera-
tional state. The implementation isolates individual effects. Also, an object is not aware of
its connections to other objects.

A connection models real-world conduits and is the mechanism for transferring sate
information between objects. Processing a connection involves reading the state of some
objects on the connection and broadcasting to others.

At all levels, updates are accomplished by processing the appropriate connections. The
three levels discussed in the paradigm are subsystem, system, and executive. A subsystem is
an aggregation of objects and the connections among those objects. A system is a set of

-' subsystems and the connections from objects in any subsystem in the set to objects in any

other subsystem in the set. If a system has only one subsystem, then the system and the

p subsystem are identical. An executive is a set of systems and all connections that cross

71n our observations of fight simulators, a buffer is a record data structure used in the communication between
processors.

CMU/SEI-87-TR-43 7

system boundaries. Figure 3-1 shows views of an executive, two systems, and several sub-

systems and objects.

Executive-level

J.System 1 System 2

t ISubsystem
1 Subsystem 2

5*f 0c

I :3 4

b ad

2 5

Executive is System 1, System 2, and connections a and e
System 1 is Objects 1, 2, and 3, and connections b and f
System 2 is Subsystem 1, Subsystem 2, and connection c
Subsystem 1 is Objects 4 and 5, and connection d
Subsystem 2 is Object 6

* Figure 3-1: Software Architecture Example

3.1. Overview of the Software Architecture

3.1.1. The Executive Level
Figure 3-2 shows the executive-level software architecture8 . In this case, we assume

an executive for Flight-Systems. The body of FlightSystems contains a tabular schedule of

subsystems to update. The names of the subsystems are declared in the package
FlightSubsystems-Names, the sole purpose of which is to enumerate the names.

Each system is represented by a package called <systemname>_Updater. 9 The

specification of an Updater package exports a single procedure which is called by
FlightSystems to update a subsystem of the system. A single parameter tells the Updater

which subsystem is to be updated.

aSe Appendix A for a description of the notation used in Figures 3-2, 3-3, and 3-4

'Tre use of "<...>" within subprogram names, type names, or text refers to a general case of the item. For
example, <Xyt0mname>_Updater, is a general form representing all instances of the package name, e.g.,
EngineUpdater, SystemPower_Updater, etc. See Chapter 5 for a more detailed discussion and examples of
the use ofC<...T.

FUghtSystems

Flght-SubsyutOm Names

lC

glight_System _Comnections EngrmeUpdater SystemPowerUpdater

S....

Figure 3-2: Executive Level Architecture

The connections belonging to the executive-level are managed by an
- <executivename>.Connections package, in this case, Flight_SystemConnections. The

architecture of the connection package is shown in Figure 3-3.

The body of the connection package is a series of separate procedures, one for each
system under the control of the executive. The separate procedures for systems with more
than one subsystem take a subsystem name as an argument.

Each procedure updates system objects connected to objects outside the system. As
discussed in the next chapter, objects are implemented as private types; pointers to the ob-
jects are stored in a data structure contained in a package, <systemname>_Aggregate.

3.1.2. System Level
Figure 3-4 shows the architecture of a system, using engines as an example. Objects in

a system are created and named by the <system...nme> Aggregate package. Objects are
rarmanaged by <object_na-me>_OhJect_Manager (OM) packages.

Systems with more than one subsystem use the names of its subsystems to differen-tiate among identical objects and similar sets of connections. Details on this aspect of the
architecture are presented in the next chapter.

CMU/SEI-87-TR-43
9

Il IN A.S. N

A

FlightIstemgoneats Fih ussea

I =7

F Engine.Aggmgat. PlightSubsystem Names

'IRotorOS Rotor2ON Buner ON BleiedVaine M DittuserOM Fan-DuctCM ExhaustON

OM - ObjedtManager

Figure 3-: onneo Mane Architecture

CM CMUSFan7-R-4

P 4. Paradigm Description

The first example to illustrate the paradigm is a turbofan engine. Engines, in flight
training simulators, interact with a variety of other systems on the aircraft, including the
fuel system, the oil system, the starter, the electrical system, and the hydraulic system. The
engines also provide bleed air for cabin pressure and air conditioning.

The next section in this chapter will describe the engine components and the inter-
action of the engine with the rest of the aircraft systems. The following sections will describe
the paradigm using the engine model as, an example.

4. 1. Engine Parts Description

The engine object dependency diagram in Figure 4-1 will be referred to throughout the
rest of this chapter. The diagram represents the objects which comprise a generic turbofan
engine and the engines relationship with the outside environment. The process for identi-

fying the objects is not an issue for this report. The choice of objects may not be ideal, but for
the purposes of the discussion in this report, this set of objects is acceptable. For more
information on turbofan engines, see [31.

The engine is the area within the large rectangle. The rounded rectangles external to
the engine represent other systems in the aircraft, e.g., electrical system, fuel system, etc., or
in the aircraft's environment, e.g., atmospheric and environmental conditions.

The square boxes within the rectangle represent the engine objects. The objects are:

e Diffuser

* Rotori

* Fan Duct

* Rotor2

I: o Burner
eBleed Valve

a Exhaust.

CMU/SEI-87-TR-43 11

L:

I-.J

Air
EvrirFaeInstrumentation Cabin Air ConSdist ioning

Inlet Pressure, Mach umber i P
Inlet Te reature Dischrg Pressure

EGrDiscan ~4 DEsha Dhr Air Flow,~~ ~ Thr st.

Fan Bloed
Diffuser Duct Exhaust Valve

Inlet PrqssureDischarge Pressure
ischarge Temperature
Dischage Air Flow r

Inlet Pressure Inlet Pressure Inlet Air Flow
+ Engine Casing lir

EA 1 Inlet , Turbine Inle Fan2 In 4 ,urbin 2 Inl g nlet :%
Pressure, Pressure, Pressure, Pressure, Pressure,

Temperature, r e Temperature Temperature, Temperature,

Air Flow i Fl-ow AirFlow AirFlow AirFlow

lFan2 Dischame Turbine2 Dischame
Tprure, Teprure, Pressure, Pressure, Pressure,
Air Flow Temperature. Temperature, emperature,

r 11 F Air Flow 1 Air Flow Air Flow

:'R tor 1 R otor2 B urner m

rtion /Vibration

Torque
Spr

Instrumentation Hydraulic Starter SysctemSitcanlio

System System

Figure 4-1: Turbofan Engine Dependency Diagram

12 CMU/SEI-87-TR-43

The arrows represent dependencies among objects. A single-headed arrow points inI
the direction of the dependency, e.g., the Diffuser is dependent on the Air Frame for machS number, and the Instrumentation and the Air Frame are dependent on the Exhaust for
other state information. A double-headed arrow represents dependencies in both directions,

i.e., it is equivalent to two single-headed arrows. For example, the Air Conditioning is

dependent on the Bleed Valve for a value of air flow, and the Bleed Valve is dependent on

the Air Conditioning and the Cabin Air for a measure of the air pressure that they re-

quire. The arrows are labeled with the state information which is needed between the ob-

jects and the external systems.

The heavy line, labelled Engine Casing, is intended to represent the internal connec-

tion between the engine objects within the engine system. It is the connection through which
the air flows as the air passes through the engine. Each object has some dependency on the

air flow, as it passes through the connection, denoted by the arrows into the connection.

Thus the Rotorl is dependent on the Engine Casing for its Fani Inlet air pressure, tem-

perature, and flow. Each object also makes its outputs available to the Engine Casing for

use by other engine objects, e.g., the Rotorl makes its Fani Discharge air pressure, tem-
pei-c.ure, and flow available to the Engine Casing.

Each engine object in the engine diagram interacts with its external environment as
defined by the diagram. No other dependencies on the outside world should be necessary

except for those shown in the diagram. The diagram serves as a specification for the engine
system interfaces. Given such a diagram and the paradigm description that follows, the

design of the engine system is complete.

Thus, an engine system is made up of the objects and connections between them inside

the large rectangle. An aircraft simulator, for a multi-engine aircraft, would have multiple

engine systems. Each would be handled identically, but would have different connections to
the outside world.

4.2. Object Abstraction

Vol The identification and extraction of objects from the problem space is not an issue here.

This section describes an object abstraction assuming the objects are identified. The engine

diagram in Figure 4-1 will serve as an example.

Objects correspond to real world entities. Objects generalize behavior, i.e., they know
nothing about their environment and they are identical in each of the engines in a multi-
engine system. They only differ in how they are connected to their environment. The ob-

jects, however, have no knowledge of these connections. The connections are described in

Section 4.3. Finally, objects' internal states are consistent with the latest known external
effects at all times.

CMUISEI-87-TR-43 13

** S. * * ~~% 's % %

4.2.1. Object Managers
Each object is represented by an object manager. There is a single object manager for

all instances of the object.' 0 Referring to the engine diagram, Figure 4-1, there will be an
object manager for each of the objects in an engine:

. Diffuser

" Rotorl

" Fan Duct

" Rotor2

4 Burner

* Bleed Valve

* Exhaust.
..

The object manager defines the attributes of the object. The attributes are invariant
characteristics defined at elaboration, e.g., an ampere rating of a circuit breaker.

The object manager allows the object's environmental effects to be placed on the object.
W' The environmental effects are external object states which are required by the object to de-

termine its state. The environmental effects are placed on an object individually by connect-
ing procedures. The procedures defined for these operations are described in Section 4.2.3.

The object manager implements the math model for the object. The math model is

"implementation dependent.

The object manager defines the operational state of the object. The operational state
refers to those characteristics which may change with time, e.g., the frictional state of a
rotor, malfunctions, or aging effects on various components.

The object manager defines the outputs available from the object. The outputs are
generated by the math model, using the environmental effects placed on the object and any
additional constraints imposed by the attributes and the operational state of the object. The
math model may be invoked when environmental effects are placed on the object or when
outputs are read from the object. This is an implementation level decision left to the system
designer, it is not defined by the paradigm.

The object manager defines an interface to the operations available on an object. The

operations allow the placing of environental effects, updating the operational state, and
reading the outputs of the object.

The actual instances of the object are stored in object aggregates which are discussed

in Section 4.4.1. An aggregate allows named access to the objects; no procedure call is re-
quired to retrieve the object.

1°The term manager is used because all access to each object is administered through the interface defined by the

object manager.

14 CMU/SEI-87-TR-43

%" % % %

J. .- ---

Finally, the object manager is independent of the rest of the system. The only compi-

lation dependencies are on global types.

4.2.2. Object Manager Structure
The representation of the object in an object manager is declared as a private type in

the package specification. Figure 4-2 is a partial package specification containing typical

type definitions found in an object manager. 11 Use of a private type allows external access to

the object while hiding the details of the object's implementation. In addition, the package

specification must define all the types used to describe the object's attributes, the operational

state, and the placeholders for environmental effects. 12 For the Burner Object Manager in

Figure 4-2, a type definition for Spark is provided. In the private part of the package specifi-

cation, the object's private type is declared as an access pointer to a data type which will be

the actual representation of the object. The data type is an incomplete type, the details of

which are delayed until the package body.1 3

The object's data representation, defined in the package body, must allow for storage of

environmental effects and reading of the object's outputs. A typical implementation is a

record with components for each of the object's attributes, operational state variables, and
placeholders for the environmental effects.. Each attribute component must have a default
value and each operational state variable should have an initial state value.

4.2.3. Object Manager Operations
There are three types of operations within each object manager. There is also a stan-

dard naming convention for these operations. One side effect of the naming convention is

that all object managers begin to look very similar. The similarity can be exploited to create

an object manager template, see Chapter 5, which can be used to generate new object manag-

ers.

The first type of operation is used to create new instances of the object. This operation

is a function, named New._<object> 1 4, which returns an instance of the private type,

<object>. For example, in Figure 4-2, the function provided by the Burner object manager

is called NewBurner-, it returns an instance of the private type, Burner. This private type

is a pointer to a new instance of the data type representing the object. In addition, values for

"Package Standard EngineeringTypes, withed at the beginning of Package BurnerObject. Manager in
Figure 4-2, contains several global definitions for typical simulator types. The package is shown in Appendix
Section C.2.

12The attributes and operational state variables must be visible to the aggregate which instantiates the objects
and to the system and executive level connections which operate on these objects. See Sections 4.4.1, 4.3, 4.4, and

4.5 for descriptions of aggregates, connections, systems, and executives.

'3 See Appendix Section C.4 for the complete Package Specification for the Burner object. Appendix C provides an
b implementation of the Engine system through the Ada specifications.

14The use of "<...>" within subprogram names, type names, or text refers to a general case of the item. For
example, New_<object>, is the general form representing all instances of the New function, e.g., NewBurner,
NewRotorl, NewExhaust, etc. See Chapter 5 for a more detailed discussion and examples of the use of"<...>".

CMU/SEI-87-TR-43 15

with StandardEngneermig.Types;

package BurnerObjectManager is

type Burner is private; - a Burner is an abstraction of a
- Burner within an Engine.

type Spark is (None, Low, High);

function NewBurner return Burner,

procedure GiveInletAirTo(
ABurner :in Burner;
GivenInletPressure : in StandardEngineeringTypes.Pressure;
GiveninletTemperature : in StandardEngneering_Types.Temperature;
Given InletAirRow : in StandardEngineeringTypesAir_Flow

procedure GetDischargeAir_From(
A_Burner :in Burner,
ReturningDischargePressure : out StandardEngineering_Type.Pressure;
ReturningDischargeJemperatur: out StandardEngineeringTypes.Temperature;
ReturningDischargeAirFlow : out StandardEngineeringTypesAirz_Flow

procedure GiveFuelFlowTo(
A_Burner in Burner,
Given.uelFlow in StandardEngineringTypes.FuelFlow

procedure GiveSparkTo(
A_Burner : in Burner,
GivenSpark :in Spark

private
type Burner_-Representation; -- incomplete type, defined in

- package body
type Burner is access BurnerRepresentation;

- pointer to a Burner representation

end Burner ..Object..Mannaer,

Figure 4-2: Burner Object Manager

components of the data type, which need their default values changed or their initial values

defined, may be set by the New_<object> function. Typically, this function is called at
elaboration, i.e., during system initialization. The return value, a pointer which is the "ID"

of the new object, is stored and used to access the object in later operations. See Section 4.4.1

for more discussion on this point.

The second type of operation is used to write external effects, i.e., environmental ef-

fects and operational state changes, on an object.. The naming convention for this operation
is Give_<outside-effects>_To. The operation takes the object private type and either ex-

ternal environment values or new operational state values as arguments. In Figure 4-2, the

procedure GiveJnletAirTo is an example of this type of operation.

The characteristics of the Give_<outside effects>_To procedure are as follows:

16 CMU/SEI-87-TR-43

*report external environmental effects to the object. The stored values of the
environmental effects will be used the next time the object's outputs are cal-
culated. These updates are typically under the control of a cyclic executive and
are placed on the object one or more times each cycle.

e report a change in the operational state to the object. The stored values of the
operational state variables will be used the next time the object's outputs are

-: calculated. These changes are typically asynchronous events triggered by the
. instructor at the IOS.

*the environmental effects and operational state variables are "saved" with the
object in the private data structure.

- the environmental values stored with the object are consistent with the external
effects at all times.

Ideally, the math model isolates the individual effects of the environmental effects.

Calculation of the object's outputs can be postponed until the object's internal state is read.

The interfaces defined by the Give_<outsideeffects>_To operations can be read di-

rectly off the object diagram, Figure 4-1. There will be one procedure per dependency arrow.
For example, in Figure 4-2, procedure Give_InletAirTo, for the Burner Object Manager,

takes the pressure, temperature, and air flow as arguments.

The third type of operation is used to read an object's outputs. The outputs are cal-

culated by the math model using the environmental effects placed on the object and any
additional constraints imposed by the attributes and the operational state of the object. The

math model may be invoked when external effects are placed on the object or when outputs

rS' (are read from the object. The naming convention for this operation is

Get..<object..output>_From. The operation takes the object private type as an argument

and returns the object's outputs. In Figure 4-2, the procedure Get._DischargeAirFrom is

an example of this type of operation.

The characteristics of the Get_<object_output>_From operation are as follows:

e the response reflects the current state of the object. The state is dependent on
the environmental effects previously placed on the object, the object's attributes,

0 and the object's operational state. The outputs are read from the private data
~ structure or calculated from the values stored in the data structure.

" the output state of the object is consistent with the external environmental ef-

. fects at all times.

,, .' e each operation is specific to the object and the output of the object that it reports.
J "This operation is the only way to access the object's output.

,.? -... The interfaces defined by the Get_<object_output>_From operations can be read

, 5'directly off the object diagram, Figure 4-1. There should be one procedure per dependency

, ,, arrow. For example, in Figure 4-2, procedure GetDischargeAirFrom, for the Burner

' "Object Manager, returns the pressure, temperature, and air flow.

The output state of an object, determined from its environmental effects, attributes,

and operational state, may be calculated either when new external information is written to

CMU/SEI-87-TR-43 17

% %~... '1i ~ i k :c -s-ki ->.-

7 1 O 9 Z t C C, 4 I.

*, the object (and then the output state should be stored with the object), by the

Give.<outsideeffects>_To procedure, or when outputs are read from the object, by the

Get_<object..output>_From operation. In the first case, each time an external effect is

deposited, a new output state should be calculated and stored so that the correct output state

can be returned on subsequent read operations. Since each external effect is independent of

all others, the object's output state will be consistent at all times. In the second case, an

object's output state is not stored, but calculated each time the outputs are read. The deci-

sion as to which implementation to use is up to the implementor of the system. That level of

detail is not specified in the paradigm.

4.2.4. Advantages of the Object Abstraction
The implementation of objects as described in this chapter follows the standard model

for object-oriented abstraction. The object managers embody the state of the object, and

changes in the object's environment are placed on the object procedurally. The major dif-

ference is the removal of connections from the objects (connections are described in Section

4.3). This decision supports separate development of objects since there is no dependency on

any modules other than global types. In addition, spaghetti compilation dependencies are
prevented. Finally, reuse is supported, since typing differences between objects is not an
issue.15

Another advantage of the object manager is to focus the addition of detail at one place.
For example, if there is loss of efficiency in the movement of air through the Burner, the loss

can be modeled in the object manager for the Burner. Also, malfunctions in components can

be simulated in the objects. The introduction, handling, and reporting of a malfunction
should be introduced at the object manager level.

4.3. Connection Abstraction

Objects are represented by the implementation scheme described in Section 4.2. At

that point one has a pool of isolated objects.

This section describes connections, i.e. the mechanism for transferring state informa-

tion between objects.

4.3.1. Overview of Connections
Software connections model real-world conduits.

The connection between the engine objects in Figure 4-1 is represented by the heavy
line labeled Engine Casing. The arrows in the diagram represent dependencies. The ar-
rowhead points in the direction of the dependency. A double-headed arrow represents de-

pendency in both directions.

o .4

16On. of the roles of connection is to convert types when necessary, see Section 4.3.

18 CMU/SEI-87-TR-43

Connections are also used to capture the passage of time. The software clock can be
viewed as another system, external to engines, which makes the cur-rent time (or elapsed

-~ time) available via a connection.

Connections provide a means to transfer information between buffers and software
objects. The buffers may be a linkage buffer between the software and the simulator
hardware, an Instructor Operator Station (LOS) buffer between the software and the LOS
station, or buffers between processors in a multi-processor configuration. In all these cases,
the connection handles the transfer of environmental effects or operational state information

- from the buffer to the software objects and the transfer of object state from the software
* -. objects to the buffer. For example, software lights in the electrical system can be turned on

and off as a result of external environmental effects or operational state changes. These
effects must be transferred to the simulator cockpit and affect a change in the hardware
lights. Lights can also be turned on and off in the simulator cockpit by the students. These
effects must be transferred to the software and change the operational state of the software
lights. The linkage buffer between the cockpit and the software is used and connections

- .4 handle the information flow.

* Finally, the updating of a system is accomplished by moving information along connec-
tions.

r 4.3.2. Procedural Abstraction
Objects are oblivious to their environment. An object manager stores environmental

effects and operational state information and provides access to the object's outputs.

The operations defined with the object allow for writing information to the object and
reading infor-mation from the object. See Section 4.2.3 for more discussion on the object

operations.

The connections between objects are captured procedurally, using these operations. All
- connections between objects within systems and between systems are modeled the same way.

4 The connecting procedures exist outside the object managers, but have visibility into
the object managers.

The connecting procedures need to perform three steps:

0 Obtain the needed information directly from an object

* convert the information if necessary

*put the information directly onto another object.

CMU/SEI-87-TR-43 19

.16
Each step is discussed in more detail in the following sections.1 6

4.3.2.1. Get Needed Information
The initial step is to obtain the external information which must be placed on an ob-

ject. The provider of the information is defined within an object diagram at the head of each
arrow, as in the Engine diagram, Figure 4-1. The provider will be either an external system,

e.g., the Fuel system, or another object within the Engine system. If the provider is from an

external system, the procedure modeling the connection must have access into the objects of
-O each system. Thus the procedure needs to eist at the next higher level of abstraction, i.e.,

within the enclosing executive. Within the executive, local variables may exist to allow for

temporary storage of the information, as in Figure 4-3. The current value of spark, from the
Ignition system object manager, is obtained with a call to GetSpark.From and stored in

the local variable SomeSpark. Thus, although the paradigm does not advocate careless

typing, it recognizes that perfect type matches will not always be possible.

If the provider is from another object within the Engine system, then the enclosing
scope of the obljeti, i.e., the Engine system itself, handles the connection.

4.3.2.2. Convert Information
The connecting procedures encapsulate type conversions. Each object manager main-

tains the state of the object in the units which make sense to that object. The connecting

procedures handle the type conversions which are necessary between the object managers.

In Figure 4-3,17 the intermediate value, obtained during the get information step above, is
converted to the proper enumerated type, as understood by the Burner object manager, by
the function SparkConversion.

There are two reasons for managing type conversions within the connection procedure.
First, the object managers are then free from inter-object type dependencies. The object

managers become stand-alone, with no dependencies other than on global data types. Thus,

the object managers become reusable units. Separate development of the object managers is
also supported. The second reason is that each object manager has a different need. There is

no reason to expect that the Burner object manager would have a need to know how the

Ignition object manager maintains the spark state. For example, the spark from the
Ignition system may be in volts while the Burner maintains the value as an enumerated

type (see Figure 4-3).

16So far, the discussion has focused on the simple case of two objects per connection. For a connection with
multiple objects, e.g., the connection between the Rotor2 and the five external systems in Figure 4-1, the steps
above expand to include each object:

* obtain the needed information directly from all objects

* process the collected information and convert if necessary -'

* put the information directly onto all objects.
17"The notation used in Figure 4-3, Engines(AnEngine).The_.Butrner, is part of the Engine Aggregate

nomenclature discussed in Section 4.4.1.

20 CMU/SEI-87-TR-43

% % V

r 'r . -. - u.--]n -

procedure ProcessEngineConnectionsTo (
A_Subsystem: in FlightSubeystemNames.NameOfA_FlightSubsvstem) in

- A local variable is defined to store the value spark when it is read from
- the ignition system. 774s is a convention, described in the SEI Ada.'
- Coding Guidelines, to restrict the spread of embedded function calls, Le.

- function cals as parameters within other function cals.

SomeSpark: Ignition.Spark.

function SparkConversion (InSpark : in Ignition ObjectManagerSpark)
return BurnerObjectManager.Spark is

-1 Descriptio.:
-1 This function performs a type conversion. It converts
- I the spark from the Ignition to a spark that the
- I BurnerObjectManager can accept. This is done
- I as an example of how the type conversions can be used to
- I connect objects which either communicate through a
- I valve/ regulator, or need different grains of coarseness of
- I the information.
- I- In this case we are assuming that the Ingition system
- I- needs finer information about the sark than the Burner.

[-~ Pa rameter Description: i

-I In-Spark is the spark that the Ignition supplies.
- return Spark is the spark returned for the Burner

begin
case InSpark is

when 0..2 => RETURN BurnerObjectManager.None;
when 3..9 => RETURN BurnerObject Manager.Low;
when 10..20 => RETURN BurnerObjectManager.High.

end case ;
end SparkConversion;

begin

get Spark from the Ignition and feed it to the Engine Burner.

SomeSpark:=
Ignition GetSparkFrom (ThiAIgsition(Given EngineName));

BurnerOObject_.Manager.GiveSparkTo
A Burner => Engmnes(AnEngine).TheBurner,
Given-Spark => SparkConversion(SomeSpark));

I..

- and so on

end Procem EngineConnectionsTo;

Figure 4-3: Spark Conversion Routine

Also, within the connecting procedure modeling of flow, resistance, or friction between

objects is possible. For example, constriction within pipes or the presence of valves in a

connecting line might alter the flow. Since the connecting procedures are modeling the flow

CMU/SEI-87-TR-43 21

-- - m *. .% %% % . . .-...• % , . % " % ",- , % -,. % • - -,, - % % • • , % -A ".%, " W •,,- . .k'

in the line, the variation in the flow along the line can also be modelled. The conversion that
needs to take place is a change in the value of the flow rate.

4.3.2.3. Put Converted Information
The final step is to place the external environmental information on the object being

updated. The information must be in the proper type to match the dependent object. Once
again, a picture, like that in Figure 4-1, defines the destination for the environmental infor-
mation. The procedure Give-.Spark.To (Figure 4-3) is an example of a put information
operation.

4.3.3. Advantages of Connections
The implementation of connections in connecting procedures, as described in this chap-

ter, provides a consistent and natural interface to the objects.

The connections insulate the objects from compilation dependencies. Objects, subsys-
tems, and systems become stand-alone. Each can be developed independently. Connecting
procedures provide a firewall; changes in implementation to objects on one side of a connec-
tion do not affect the implementation of objects on the other side.

Connections facilitate independent development and reuse. In particular, connecting
procedures provide a systematic way to handle typing mismatches. The type conversions
between objects are easily managed since the connecting procedures have visibility into the
objects.

Connecting procedures provide a consistent means of updating systems and objects.
Thus, connecting procedures provide a means for specifying control flow. No extraneous
concepts or operations are required. The notion of connecting procedures handles all types of
interactions between objects.

The connecting procedures provide a locus of control since all connections at an ab-
straction level are handled in one place.

4 Finally, the modeling of malfunctions is facilitated, i.e., they can be defined easily and
implemented just like any other connection between two objects.

4.4. Subsystems and Systems

To this point we have defined objects and the connections between them. This section
discusses a method for grouping the objects and connections together into a logical scope.

A subsystem is an aggregate of objects and the connections between the objects. The
objects are accessible by name outside the subsystem, as discussed below. The connections
among the objects are hidden at the subsystem level, i.e., no higher level has any knowledge

of the subsystem connections.

described in Section 4.3. No access is required to objects outside the subsystem.

22 CMU/SEJ-87-TR-43

%~ %

S...

A system is a set of related subsystems. One example is the Engine system which

consists of a group of identical but isolated subsystems, one for each engine. The same

objects are used in each subsystem; the connections to the outside world are different; and
there are no connections between the subsystems. Another example is a simulator Electrical

system, which consists of related and tightly coupled subsystems. The same objects are used
in each subsystem; the same kind of connections are used throughout; and each subsystem

depends on the others.

If there is only one subsystem, then the system and the subsystem are the same. A
system can see only the objects belonging to its subsystems. The connections among objects
in the subsystems that cross subsystem boundaries are the responsibility of the system and

are called system level connections.

V All the subsystems in a system can be updated at the same time or individually. The

update is initiated by an executive call to the system. If the system has more than one

subsystem, then a parameter is used to specify the subsystem. The system level connections
to the subsystem are processed, then the subsystem is updated, as described above. No

access is required to objects outside the system.

4.4.1. Subsystem Aggregates
A real world system usually consists of collections of objects. An aggregate creates and

names a collection of objects. An aggregate is a data structure indexed by the name of the

object. Objects are accessed by name. A procedure call is not required to obtain a "pointer"
to the object being accessed.

4.4.1.1. Building an Aggregate
As was described in Section 4.1, an engine is a collection of objects, including the dif-

fuser, rotors, a burner, and so forth. Each object is managed by its own object manager. An

engine record can be constructed as a grouping of these objects (see the
EngineRepresentation in Figure 4-4).

package Engine-Aggregate is

type EngineRepresentation is -- Defines an engine representation
record - as consisting of an:

TheDiffuser Diffuser,
The Rotori Rotorl;
TheFanDuct FanDuct;

/a The Rotor2 : Rotor2;
TheBleed Valve : BleedValve;
TheBurner Burner;
TheExhaust: Exhaust;

end record;

end Engine_Aggregate;

Figure 4-4: Engine Representation Example

CMU/SEI-87-TR-43 23

~~~ t k % %~l % . %I( *~*



For an aircraft as a whole there may be several engines. Using a constant array, an

aggregate of the engines can be created which stores references to
Engine_Representations, one for each engine on the aircraft (see Figure 4-5). The con-

stant array, Engines, is created at elaboration time. Each object is instantiated by a call to
the function New_<object>, described in Section 4.2.3, with all initial conditions set by
default. The pointer to the private type returned by the function is stored with the name of

the object. Thus, reference to the object can be done by name. The aggregate data structure
is visible so no procedure call is required to retrieve an object. The array is indexed by the

% enumerated engine names Engine._Engine_4. The engine names are defined in a global
-' type package that defines all the subsystem names.

The constant array, Engines, is defined in a package specification to allow access to

the Engine system by an external system which withs the package specification and the
appropriate object managers. The aggregate and object managers are used by the connecting

procedures, discussed in Section 4.3.3, to reference the necessary objects. All references to
objects are done through the aggregates. An object in an engine is referenced as:

IL Enginea(EngineName).The_<object>

For example, the Diffuser of Engine 1 is referenced as:
Engines(Engine.1).TheDiffuser

and the Rotorl of Engine 3 is referenced as:
Engines(Engine3).TheRotor1

The code fragment, in Figure 4-6, shows how to reference an engine object using the

aggregate.' 8 The Discharge Air is read from the Diffuser object using the reference,
Engine.Aggregate.Engines(GivenEngineName).TheDiffuser and written to the

Rotorl object using the reference, Engine_Aggregate.Engines

(Given_.EngineName).TheRotorl.

4.4.2. Updating
The existence of subsystems allows the processing of the enclosed objects to be done as

a unit. The process of updating a subsystem occurs in two steps (shown for an executive in ",
Figure 4-8):

* process the external connections and

* perform the subsystem update.

The operations are done atomically for each subsystem. This means that when it is time to

update a subsystem, all work necessary to complete both steps of the update is finished
before the process is begun on another subsystem.

Processing the external connections involves calling the connecting procedures, as de-
scribed in Section 4.3. The external effects, i.e., effects from objects external to the subsys-

tem, are processed by the connecting procedures at the enclosing levels.

IS'he GivenEngine-Name used to reference tho. objects wiU be passed as a parameter to the connecting

procedure performing the update.

24 CMU/SEI-87-TR-43



Z.

package Engine-Aggregate is

- Define an object which holds all 4 engines in the system and
"" - initialize them (ie. all their parts).

Engines: constant array (Enginel..Engne_4) of EngineRepresentation
-' "(Engine-1 =>(

TheDiffuser => NewDiffuser,
The_- Rotorl => New_Rotori,

* The Fan Duct => NewFanDuct,
The_Rotor2 => NewRotor2,
TheBleedValve => New_Bleed_Valve,
The.-Burner => NewBurner,
The-Exhaust => NewExhaust

A -" "" Engine_2 =>(
TheDiffuser => New_Diffuser,
TheRotori => NewRotori,

" The Fan Duct => NewFanDuct,
TheRotor2 => NewRotor2,
TheBleed-Valve => NewBleedValve,
The-Burner => NewBurner,
The Exhaust => New-Exhaust

Engine_3 =>
The Diffuser => New_Diffuser,
TheRotorl => NewRotorl,
TheFanjDuct => NewFanDuct,
The_Rotor2 => New_Rotor2,
TheBleed-Valve => New_BleedValve,
TheBurner => NewBurner,
TheExhaust => NewExhaust

Engine-4 =>
TheDiffuser => New_Diffuser,
TheRotorl => NewRotorl,
The Fan Duct => New_FanDuct,
The Rotr2 => New_Rotor2,
The_.Bleed_.Valve => NewBleedValve,
The-Burner => New_Burner,
The Exhaust => New-Exhaust

end EngineAggregate;

" "Figure 4-5: Engine Aggregate Example

Once all the external effects have been placed on the subsystem, then a subsystem

update is performed through a single procedure call, Update_<subsystem>, to the subsys-
tem.

For the Engine system example, all the subsystems, i.e., each engine on the aircraft,

are independent of each other. There is no information which has to pass between the sub-

, systems. The only external connections which need to be processed are those from systems

outside the Engine system, e.g., the Fuel system. These connections are handled at the
enclosing executive level. Then a subsystem is updated, via the procedure UpdateEngine,

with the subsystem as a parameter, see Figure 4-6. Performing the subsystem update in-

CMU/SEI-87-TR-43 25

% %. % % .4



package Engne_Updater is

procedure UpdateEngine(GivenEngineName: in Name Of A_FlightSubsystem) is

Diffuser Discharge _Pressure StandardEngineerng_Types.Pressure;
DiffuserDischargeTemperature: StandardEngineeringTypes.Temperature;
DiffuserDischarge_Air_Flow Standard_Engneering Types.AirFlow;

been

- Model the connection characterized by the dependence of the Rotorl
- on the Diffuser for PneumaticEnergy.

- NOTE, no type conversion is necessary because both types are based
- on Standard-EngtneeringTypes Package definition*.

Diffuser_ObjectManager.GetDischargeAir_From(
A-Diffuser => EngmeAggregate.Engmes(Given-EngineName).TheDiffuser,
ReturnangDischargePressure => DiffuserDischargePressure,
ReturningDischarge-Temperature => DiffuserDischarge Temperature,
ReturmngDischarge_Air_Fow => DiffuserDischargeAirFlow

RotorlObject.Manager.GiveFanl_InletAirTo(
ARotorl => EngineAggregate.Engin(GivenEngine_Name).TheRotorl,
Given_FanlInlet_Pressure => DiffuserjischargePressure,
GivenFani_InletTemperature => DiffuserDischargeemperature,
GivenFan Inlet AirFlow => DiffuserDiachargeAir-low

end EngineUpdater,

Figure 4-6: Reference to an Engine Object using the Aggregate

volves processing the connections at the subsystem level. The update procedure is dependent

on the Engine Aggregate and the object managers. A fragment of the UpdateEngine pro-
cedure is in Figure 4-6. The connection representing the dependency of the Rotorl on the
Diffuser for air flow, temperature, and pressure is shown.

4.4.3. Advantages of Subsystems and Systems
The implementation of systems, as described in this chapter, encapsulates subsystems,

objects, and connections within a logical scope. A system needs to access only its aggregated
objects, the global types used by the objects, and the internal connections.

This separation of concerns allows for several things:

Minimum compilation dependencies. Subsystems and systems become stand-
alone. Connecting procedures provide a firewall; changes in implementation to

'16 objects in a subsystem on one side of a connection do not affect the implemen-
-'-' tation of objects in another subsystem on the other side.

*Separate development of components and reuse. Systems and subsystems are
:a. self-contained. The only dependencies are on global types and object managers.
-.

26 CMU/SEI-87-TR-43

..
.. ,..%



N

a a potentially easy disbursement within a multi-processor environment (more on
this in Section 6.1).

4.5. Executives

An executive is a system consisting only of other systems. For example, the Flight
Systems Executive surrounds the Engine system, the Electrical system, the Fuel system, etc.

The executive controls the updating of all the systems within its scope. The executive
handles all connections between its systems, e.g., those between the Engine system and the

-. Fuel system. In a multi-processing environment, in this model, there would be one executive

5-- .- *level per processor. The executive would have buffers for communication between the

processors. However, the synchronization among the processors would happen outside the

executive.

with FhghtSystemsConnections;
with FlightSubsystemNames; urn FlightSubsystemNames;

"" with Global-Types;

package FlightSystems im

type ActiveInFrame in array (Name-OfA_FlightSubsystem)
of Boolean;

r..

ItsTamTo Do: constant array (Global Types.Execution Sequence) of
Active In Frame:=

(Frame_1_Modules AreExecuted => (Engine I => (True),
others => (False)),

Frame_2_ModulesAre Executed => (AcPower => (True),
b., :-. others => (False)),

Frame_3_Modulea Are Executed => (Engine_2 => (True),
others => (False)),

Frame-4_ModulesAre Executed => (DcPower => (True),
* I other@ => (False)),

Frame_5_ModulesAreExecuted => (Engine_3 => (True),
others => (False)),

Frame_6_ModulesAreExecuted => (others => (False)),
Frame_7_ModulesAreExecuted => (Engine 4 => (True),

others => (False)),
Frame_8_ModulesAreExecuted => (others => (False))

0

end FhghtSystems;

SOFigure 4-7: Executive Activity Table Example

4.5.1. Implementation of an Executive
All the subsystems within the executive's systems are known to the executive, as are

all the object's in those subsystems. The executive has an activity table, indexed by the

subsystems, which defines an order for processing those subsystems. An implementation for

use within a cyclic executive is shown in Figure 4-7. The constant array, ItsTimeToDo,

~. * defines the frame in which each subsystem within the Engine system and the Electrical

* CMU/SEI-87-TR-43 27

..
% .

.: Z.



system gets processed. The processing is actually initiated by the procedure shown in Figure

4-8.

with Global Types;

with Flight SystemsConnections;
with FlightSubsystemNames -ase FlightSubsystemNames;

with EngneUpdater
with SystemPowerUpdater,

package FlightSystems is

procedure UpdateFlightSystems (Frame: in GlobalTypes.ExecutionSequence) is

- I Description:
-I flight systems executiue. Performs process cnnections and update

i as an atomc action for each subsystem.
-i

% -I Parameter Description:
%-. I frame is the current executing frame

-I Note

-i none

begin
for ASubsystem in NameOfeAFlightSubsystem loop

if ItsTimeToDo (FrameXASubsystem) then
came ASubsystem is

when DcPower..AcPower =>
Flight SystemsConnections.

Proces_Power-_ConnectionsTo (ASubsystem);
SystemPowerUpdater.

UpdateSystemPower(A_SubsysteWm);

when Engine-l..Engine_4 =>
FlightSystemsConnections.

ProcesEnguieConnectionsTo (ASubsystem);
EngineUpdater.

ed Update-Engine (ASubsystem);

end if;
4 end loop,

end UpdateFlght.Systems;

end FlightSystems; j

Figure 4-8: Flight Executive Example

The processing for a subsystem involves putting the outside effects on the subsystem

and then telling the subsystem to update itself. These operations for the subsystems are
4 done atomically. For example, in Figure 4-8, when it is time to update an engine subsystem,

a call is made to Flight_SystemsConnections.Process_EngineConnectionsTo. This
procedure accesses the engine objects directly, using the engine aggregate, to write outside

4

28 CMU/SEI-87-TR-43

..



effects onto the engine objects. Figure 4-9 shows a fragment of a connecting procedure from

U the executive level. The fragment reads the torque energy required by the Integrated
Drive Generator object manager in the Electrical system.

Next, the procedure EngineUpdater.UpdateEngine is called, for the same engine

subsystem, to process the connections internal to that subsystem. When this operation is
finished, the engine subsystem update is complete and the subsystem is consistent with all
its external effects.

IntegratedDriveEnergy
Integrated_DriveObjectManager.GetTorqueFrom

An_IntegratedDrive =>
IntegratedDriveGenerator(ASubsystem)

Figure 4-9: Executive Connection Procedure Example

Integrated-DriveEnergy
Fhght-SystemsBuffer.GetTorqueFrom

ABuffer Location =>
Flight Buffer.Idg(ASubsystem)

Figure 4-10: Communicating with a Data Transfer Buffer

4.5.2. Advantages of Executives
The implementation of executives described in this chapter follows the same model of

,. connections used at the system and subsystem levels. Additionally, the executive has
scheduling information in the form of an activity table which defines an order for processing
its systems. Using the activity table, tuning of the simulator system by balancing the sub-
system processing across the frames of the cyclic executive is simplified.

Distributed processing can be handled easily by partitioning executives across the

available processors. More discussion of this topic is in Section 6.1.

4.6. Advantages of the Architecture of the Paradigm

The two main design goals for the paradigm were to eliminate unnecessarily layered

objects and to simplify dependencies among objects. Both goals have been met.

The structure of objects is flat. Connecting procedures--the means, within the para-

*digm, of accessing states of objects-at the executive level can access all objects in systems
under the control of the executive. Objects are accessed by name through the data structures
which aggregate subsystem objects. A procedure call is not required to obtain a "pointer" to

'., the object being accessed. We assert that the solution is natural. A spark goes to a burner,
not to an engine.

CMU/SEI-87-TR-43 29

1r , .



.s. ..-- r.- - - :,. - wv WV - WV - W-_ -Wl - W -L . -Ur-~vV.v S V. '~~ 5 ~~ -

The abstraction of higher-level objects, such as engines, is captured in the notion of a
system, i.e., a set of objects updated as an entity. The benefits of nested objects are retained,

* i.e., high-level objects can be updated and reused as a single entity. This abstraction coupled
with the approach to processing connections facilitates multiprocessing. Placing a set of
systems on a separate processor requires only creating an executive for the processor and
making minor changes to the executive-level connections to the system. None of the system-
level code changes.

The major difference between this paradigm and other object-oriented paradigms is the
use of connecting procedures to propagate changes. Connecting procedures allow objects,
subsystems, and systems to standalone. Each can be developed independently. Connecting
procedures provide a firewall: Changes in implementation to objects on one side of a connec-
tion do not affect the implementation of objects on the other side.

Connecting procedures facilitate both independent development and reuse. In partic-
ular, connecting procedures provide a systematic way to handle typing mismatches. It is
desirable, but not always possible, for two connected objects to use the same types to commu-
nicate. Similarly, connecting procedures are a convenient way to adjust the performance of
flight simulators to the expectations of crew members. 19

The software partitioning of connecting procedures simplifies compilation dependen-
cies. All access to objects happens through connecting procedures. Thus, it is only the
procedures managing connections to a subsystem that need to be recompiled if an object
manager specification changes. Each of these is implemented as a separate procedure.

Connecting procedures provide a consistent means of updating systems and objects.
Thus, connecting procedures provide a means for specifying control flow. No extraneous
concepts or operations are required. The notion of connecting procedures handles all types of
interactions between objects.

The paradigm produces software that is easy to modify. Typical modifications include
adjusting the distribution of processing among the frames of a cyclic executive, adding mal-

* functions, adding or removing objects, and modeling wear and aging of components. Ex-

amples of some of the potential modifications are:I
1. moving the update of a subsystem to a different frame requires a change only in

the executive's schedule table
2. adjusting the air flow for one of the systems using air flow can be done in the

3. adding a malfunction to an engine component, the burner for example, requires
only the following:

19For example, referring to Figure 4-1, consider the five-way connection passing torque and rpm between Rtotor2
and five external systems. The connection procedure provides an easy locus to modify the effects on one of the
external systems without affecting the other four. Typical implementations must be very careful that changing the

NO'S Icommunication mechanism doesn't perturb the way all the systems react.

630 CMUISEI-87-TR-43

%.................................. %*



a. making the malfunction selectable at the Instructor Operator Station
(I05)

b. adding a connection from the IOS buffer to the burner

c. changing the model of the burn 3r.

4. the major math models of the engine need not be disturbed by changes; adding
a third compressor stage to the engine requires only creating the object in soft-
ware and changing the model of the casing accordingly

5. modeling function in a rotor due to wear on a bearing requires adding the inter-
face Time_HasPassed (Amount: Time) to the object, making a small change
to the private type, and reducing the efficiency of the rotor in proportion to its
time in service

6. adding a malfunction to a connection, e.g., the line to the burner, requires creat-
ing an object to save the state of the line and a connection from that object to
the 10 n buffer.

0 ,

" -" 31

% % %

k . aead hnigteodloJh;ain codnl
-S .mdln ucini oo u owa nabaigrqie digteitr

-.-... eIS ufr

5-..-' *5. *.-

- - - --5,.',.



5. Development Process

5.1. Role of the Paradigm

The development of systems using the paradigm is a design activity. The paradigm
molds the designer's analysis of the requirements. The paradigm accommodates objects and

* connections. The result of the analysis of the requirements is a set of real-world objects and
connections grouped into subsystems and systems. Once this choice is made, the paradigm
dictates the implementation.

The paradigm can be viewed as a means of consistently specifying objects, connections,
subsystems, systems, and executive-levels. The result is a consistent implementation. Main-
tainers do not need to learn the architecture of each system. If the paradigm is followed, all
systems will look the same.

During acquisition, the architecture of each system does not need to be evaluated. The
quality of the architecture that follows from the paradigm needs to be evaluated only once.

Design reviews can focus on the analysis of requirements, the choice of objects and connec-
tions, and the subsystem and system groupings.

4 5.2. Templates and Reuse

The software architecture defined within the paradigm consists of levels of abstraction.
Each level, e.g., object manager level, subsystem level, system level, and executive level, has
defined software components: object managers, updater packages, aggregates, and connec-
tion packages.

Each of these components is similar across different systems. This similarity can be
exploited to create reusable templates for each component.

The templates contain the general features of the component, with place-holders for
the specific features. Appendix B contains a complete objer' manager template. The
template uses the notation <object> as a place-holder for the name of the abject. The nota-
tion <attribute -x> is used for expression of operational state variables and attributes. The
object operations are expressed in similar terms (See Figure 5-1).

32 CMU/SFI-87-TR-43



function New_<Object>
<Attrnbutel> :in <Object>_<Attribute-1>;
<Attribute 2> in <Object>_<Attribute_2>
)return <Object>;

" ."--I D e sc r ip tio n : .
• ""-1 creates a new <object> as a private type.

-1

- Parameter Description.
- <attribute_ >
-1 <attribute_2>
-1 <object> is the access to the private data representaion.

procedure Give_-<State I>-To

A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_SideNames;
<A_State_1>: in <StateTypel>);

-I Description.

-. I places <statetypel > on a specific side of a <object>.
,t~a -I

- I Parameter Description:
-- I a_<object> is the <object> being acted on.
-I a_<object> side is the side of the <object> to be updated.

-I <state-type-l> is declared ...

function Get <State 1> From

A_<Object>: in <Object>;
A_<Object>_.Side: in <Object>_SideNames
return <StateType-1>;

- I Description.

- i Reads <state-type-l> available at a specific side of a <object>.
- I

- I Parameter De.cription:
- I a_<object> is the <object> being acted on.

-I a_<object>_side is the side being queried.
-- I <state-type-l> is declared...

Figure 5-1: Object Manager Template Example

The templates are not intended to contain all the necessary details for generating a

complete version of the code. They are intended as a starting point. The framework for each
object manager, update package, connection package, and aggregate is similar. The details

are different. Package bodies and subprogram bodies are provided within the templates. The
implementor provides details within a template's framework. The resulting components will
have a similar look and structure. This will aid readability, understanding, and mainte-

nance.

4 CMU/SEI-87-TR-43 33



5.2.1. Diagram Parsers
Several commercial tools have the capability of parsing diagrams and generating code

templates to varying levels of detail. The detail is limited by the diagram notation.

The dependency diagram, Figure 4-1, is typical of a diagram for which a parser could
be written. The parser could generate the templates discussed earlier. We view this as a
natural extension of the paradigm toward a more automated solution.

5.3. Enhancements to Object/Connection Diagrams

The notation used on the object diagram, Figure 4-1, reflects the dependencies between
objects and state information. It defines the connections necessary to construct the system.

Several extensions to the diagram notation can be envisaged. One would be to
delineate the processing order of the connections. The heavy line, labelled Engine Casing,
is intended to represent the internal connection between the engine objects within the engine

system. It is the connection through which the air flows as the air passes through the
engine. Each object has some dependency on the air flow, as it passes through the connec-

tion, denoted by the arrows into the connection. Nothing on the diagram denotes the order of
connection processing. There may, however, be a specific order necessary to insure a consis-

tent state of the Engine system.

Another extension would be to add pointers to algorithms. The algorithms, expressed

in pseudocode, could be inserted in package bodies by the diagram parser.

Cb

34 CMUISEI-87-TR-43

VIv Z . ~ ~ ~ ~



S

6. Open Issues

-' 6.1. Distributed Processing

One of the design goals of the paradigm was to facilitate spreading the work load over

multiple processors. The description that follows encompasses our theories on what would be
required to distribute the processing over several processors. We have not implemented or

tested any of these ideas.

The paradigm begins with the notion of an executive. An executive controls the update

of a set of systems compiled together and thus running on a single processor. The paradigm
5 assumes that there will be more than one set of systems and that multiprocessing will be

involved.

The abstraction of higher-level objects, such as engines, into systems allows a set of

objects to be updated as an entity. This abstraction coupled with the paradigm's approach to
processing connections facilitates multiprocessing. Placing a set of systems on a separate

processor requires only creating an executive for the processor and making minor changes to
the executive-level connections to the system. 20 None of the system-level code changes. 21

Communication between executives is handled by an abstraction called a buffer. A
buffer is some means of sharing data among separately compiled software. 2 2 The paradigm
makes no assumption about how the operating system transfers data or how executives on

separate processors are invoked. For example, assume that the Flight System Executive has
been split so that some of its systems, e.g., the Electrical system and the Fuel system, are on

a processor separate from the Engine system. The executive that handles the Engine system

20A typical minor change is demonstrated in Figurme 4-9 and 4-10.

2There are many approaches to the solution of this problem. We do not intend to compare or delineate all
possible solutions. One other solution would be to have the generation of connection dependencies handled by
compiler pragmas. The effects would be the same, however. Our goal was to minimize perturbations to the

* connection procedures.

2In our observations or flight simulators, a buffer is a record data structure used in the communication between
processors.

* CMU/SEI-87-TR-43 35

- - ---.. . .



needs to communicate with a buffer to get the environmental effects from these other subsys-
tems. Figure 4-10 shows how communication between the executive's connecting procedure
and a buffer can be implemented.23 The fragment reads the torque energy required by the
Integrated Drive Generator object manager in the Electrical system from the buffer. This
is one of the changes required to implement a system on distributed processors.

Another required change would be to load the buffer with the states of objects needed
.4 by systems on the other processor. All outputs required by systems on other processors must

be written into the buffer. This step would take place after the update of the subsystem, as
defined in Section 4.4.2.

One can imagine a development environment which automatically accommodates the
distribution of systems across processors. The notations for the object/connection diagram

- ~. could be extended to indicate which systems were to be grouped on a processor. The
address" of the object read by a connection procedure could be calculated at link time: The

choices would be an object or a buffer surrogate.

6.2. Tuning

The construction of a system using the paradigm results in a product which is easy to
%: read, understand, and maintain. The performance of the system, however, still must fit into

the time constraints demanded by the application. The implementation described in the
paradigm (and embodied in the templates) is intended to be a starting point for a usable
system. We fully expect that adjustment of some of the concepts may be necessary. For
example, Ada allows an implementor to inline certain procedures and functions. The over-
head of a procedure call is saved. For many of the object manager operations, which are only
a few lines long and tend to be called frequently during an update, iling may provide a
significant time savings.

Another useful technique is that of combining effects. For example, providing multiple
parameters to a subprogram instead of making multiple subprogram calls. The implemen-
tation of the Engine system, described in Chapter 4, demonstrates this technique. Figure 4-6
provides an example which shows three effects in each subprogram call.

A second method for combining effects is to group like objects together. For example,
in a simulator electrical system there are hundreds of circuit breakers. Each one has to be
updated with respect to the hardware linkage buffer on each cycle. Also, at each level sev-

0 eral breakers have to be updated through their connections to other systems. One solution is
to create an object manager that handles groups of identical objects. A circuit breaker collec-
tion manager would contain subprograms for dealing with groups of breakers at a time.

Thus, a single subprogram call operating on a group of objects replaces multiple calls each
S operating on individual objects.

3 23The figure contains the same example used in Section 4.5. 1, Figue 4-9.

*36 CMU/SEI-87-TR-43



6.3. Reposition and Flight Freeze

Flight freeze and reposition are two of the software modes of an aircraft simulator.

In flight freeze mode the simulator software state is frozen, i.e., it stops changing with

*time. Communication with the simulator hardware must be maintained. Freeze may be
initiated by the instructor at any time during a training exercise when communication with

students is necessary.

;, ing The reposition mode is initiated by the instructor at the LOS when a particular train-
igexercise is to be repeated. The communication between the simulator software and the

hardware is maintained, and new values for flight data are loaded into the software. After a

sufficient waiting period to allow the software to ramp to the new conditions, the simulator is
restarted.

The paradigm considers time to be an outside effect on an object. Thus, it might be

possible to implement flight freezes by controlling the time effects on objects. Similarly, a
reposition would be accomplished by using reposition connecting procedures. In reposition

mode, the executive level would connect systems to reposition buffers. A connecting proce-

dure would read from the buffer instead of the object it reads from during normal run mode.

We have not implemented or tested these ideas. However, we are convinced that the
paradigm does not complicate reposition and flight freeze.

CM E--R33

S%



7. Electrical System

An Electrical system in an aircraft provides electrical power to devices in other sys-
tems: Devices such as fuel pumps and valves in the Fuel system, hydraulic pumps in the

Hydraulic system, and air conditioning in the Environmental Control system. The systems
are able to function only if power is available. They, in turn, put their load, i.e., the amount

* of current they require, back onto the Electrical system. The load is transferred back to the

generators, along the Electrical system buses, where a determination of possible overloading
takes place.

A subset of the Electrical system has been completed and tested. The code with accom-

panying documentation is available on request from the authors. The code illustrates some
concepts not illustrated by the Engine system example.

7.1. Additional Concepits

The Engine system, Appendix C, is complete through the package specifications. The

subset of the Electrical system is fully functional and has been thoroughly tested.

Several performance issues arose during the implementation. There are several

hundred circuit breakers in a typical electrical system. Each one has to be updated with
respect to the hardware linkage buffer on each cycle. Also, at each level of the software
several breakers have to updated through their connections to other systems. The sub-

program calls in each object manager were inlined in order to reduce the overhead during
update.

Grouping of like effects is also performed. Voltage and load conversion factor (lcf) are
updated together. In addition, voltage, lcf, and current are grouped in a data structure
which is used during all read operations from objects. Both steps result in fewer subprogram

calls.

The concept of updating a system as a unit means, to us, that all aspects of the system

update must be complete in the execution frame. The subset includes a tie bar, an electrical
bus which connects several other buses. In order to insure that the update is complete
within the frame, the tie bar is processed repeatedly in the frame. The number of times
necessary depends on the number of other connections to the tie bar.

38 -CNu/SEI-87-TR-43 *.*,i

V'_



L

Other issues that arose during the complete implementation included decisions about
writing effects to objects and reading outputs from objects. For some objects, like circuit
breakers, the external effects are written and outputs are calculated during a read operation.

* For other objects, states are calculated when effects change.

- . The Electrical system consists of related and tightly coupled subsystems. The same

objects are used in each subsystem, the same kind of connections are used throughout, and

4P each subsystem depends on the others. Thus, unlike the Engine system, there are connec-

= tions at the subsystem level. The Flight executive updates the connections between other
systems and the Electrical system. The Electrical system then updates the connections be-

- . tween its subsystems. Finally, each subsystem updates its internal connections. The multi-
level updating cries out for the creation of object managers for collections of objects. We have

* chosen not to implement these; they arc left as an exercise for the reader.

The Electrical system object/connection diagrams look like circuit diagrams. Given a
- . library of objects and a diagram parser, one could fully automate the production of code from

a circuit diagram.

V4 M/E87T-39

% 'I



Appendix A: Software Architecture Notation

The notation used to describe software architecture is a modified form of the notation
expounded on by Grady Booch in his book on software engineering with Ada [11 and his book
on reusable software components with Ada [2]. The notation used is true to the intent of
Booch's notation. The variations (i.e., extensions) are:

* we use reduced package, subprogram and task icons inside larger icons rather
than the object (or blob) icon

a we use object dependency arrows more subtly, to distinguish different types of
dependencies

* we have layered the diagrams, i.e., we show a diagram of top level dependencies
and then expand the bodies of the figures to show the next layers of detail

* we do not show the internal details of any reusable subsystem, package, sub-
program or task which is used.

One final note about the notation: The figures need not show all the fine-grained detail

of a package or subprogram. When the code of a package (or subprogrm) is compared to a
figure associated with that package (or subprogram) there may be nested procedures or
packages not shown on a particular picture, or it may depend on a package not explicitly

shown in the figure. The guidelines for these cases are:

utility packages or services are not shown (this includes things like textiores
able data structure packages, math libraries, etc.)

* the figures are meant to show the significant details at a particular level, not all
the details

9 the definition of "a significant detail" is solely at the discretion of the designer.

Based on these ideas, Figures A-i thru A-4 explain the meaning of each of the icons available

using this notation.

40 CMUISEI-87-TR-43



Object Subsystem Object
Dependency

a b c

Figure A-i: Object, Subsystem and Dependency Notation

The object (or blob) icon, shown above in Figure A-1 (a), represents an identifiable

segment of a system, about which we have no implementation information.

The subsystem icon, shown above in Figure A-1 (b), represents a major system compo-
nent that has a clearly definable interface, yet, which is not representable as a single Ada

package.

i The object dependency symbol, shown above in Figure A-1 (c), indicates that the object

at the origin of the arrow is dependent on the object at the head of the arrow. The origin of

the arrow indicates where the dependency occurs. If the origin is in the white area of an icon
(shown in subsequent figures), it indicates a specification dependency. If the origin is in the

shaded area, it indicates a body dependency.

,-U

SCMU/SEI-87-TR-43 41

.. . . . .

%,% %



Package Package Package
Specification & Specification Bd* Body

a bC

Package with Package with Generic
nested subpackages nested subprograms Package

-9 11

d e

Figure A-2: Package Notation

The package specification and body icon, shown above in Figure A-2 (a), represents an Ada
package specification, the white area, with an associated package body, the shaded area.
This icon can be broken apart to show a package specification, Figure A-2 (b), or a package
body, Figure A-2 (c).

Figures A-2 (d) and (e) are variations on the package icon which show greater detail.
Figure A-2 (d) is used to represent packages which have nested subpackages within the body;
if the small package icon were placed within the specification, it would indicate visible
nested packages. Similarly, Figure A-2 (e) illustrates the notation used for separate sub-

* programs within the body of a package.

Finally, Figure A-2 (f) illustrates the icon used for generic packages. Everything dis-
cussed above in regard to regular packages can also be applied to generic packages.

5 42 CMU/SEI-87-MR43



Subprogram Subprogram
Specification & Body
Body

ab

Subprogram with Subprogram with Generic
nested subprograms nested subpackages Subprogram

-A,

Cd e

Figure A-3. Subprogram Notation

Much of what was discussed previously in regard to packages also applies to subprograms.
The subprogram specification and body icon, shown above in Figure A-3 (a), represents an
Ada subprogram specification, the white area, with an associated subprogram body, the
shaded area. This icon can be broken apart to show a subprogram body, Figure A-3 (b).

Figures A-3 (c) and (d) are variations on the subprogram icon which show greater

detail. Figure A-3 (c) is used to represent subprograms which have nested subprograms
within the body. Similarly, Figure A-3 (d) illustrates the notation used for separate sub-
packages within the body of a subprogram.

Finally, Figure A-3 (f) illustrates the icon used for generic subprograms. Everything
discussed above in regard to regular packages can also be applied to generic subprograms.

*CMU/SEI-87-TR-43 43

% %, -. % .% N* ~% *



Task Task Task
Specification & Specification Body
Body

a bC

Figure A-4: Task Notation

4 Again, much of what was discussed previously in regard to packages and subprograms, ap-
plies to tasks. The task specification and body icon, shown above in Figure A-4 (a),
represents an Ada task specification, the white area, with an associated task body, the

'p shaded area. This icon can be broken apart to show a task specification, Figure A-2 (b), or a
task body, Figure A-4 (c). Although they are not shown, nested package and subprograms
are represented in exactly the same manner as shown in Figure A-2 for packages and sub-
programs.

44 CMUISEI-87-TR-43



Appendix B: Object Manager Template

- I Module Name:
I <object>-object-manoger

I Module Type.
- Package Specification

-Module Purpos.:
I implements the type manager for objects of type <object>.

I Module Description:
* -I <object> is implemented as a private data type created by new-<object>.

- I Connections are connected to a side of an <object>; the sides of <object>
- I are <sides>. Operations are available to read power units
-1I from and place power units on a specific Point to an <object>.
- I The external states of <object> are <attribute_4>, <attribute_-2>.
- ThwLes states are affected by actions other than the propagation of
- I voltage and current within the subsystem of which a given

*- I<object> is a part. Operations are available to get and update
- I these states.

i-tI

-I Referensces:~
I Design Documnents:

-I User'sManual:

-I Testing and Validation:
-I none

.- I

-I Notes:
k- - I <object> is an element of an electrical circuit. Elements are
J - I connected to Connections. A connection reads power available

- I from elements connected to it and propagates information to
I elements. The element

-I retains information about conditions at all Points. The
I availability of power to a Connection depends on the state of

-I the element and conditions on the opposite side of the element.

~~~~- MoueIye

------------ - --------------------------------
I Modification History:

- ddMmmy author Created

I Distribution and Copyright Notice:
I TBhD

I Disclaimner.
S 'This work was sponsored by the Department of Defense.

4CMU/SEI-87-TR-43 45

% votg n u~twti hesbytmo hc ie
"~~~ ~~ ~~ " -%ojc>i at prtos r vial ogtadudt

Di Te views and conclusions contained in this document are
-. solely those of the authoris) and should not be interpreted asJ

representing official policies, either expressed or implied,
-- [of the Software Engineering Inst it ute, Carnegie Mellon

% University, the U.S. Air Force, the Department of Defense,
or the U.S. Government

with Electrical_.Units; urn. Electrical_Units;

<pac ge Object>ObjectManager is

type <Object> in private;

type <Object>_SideNames is (<Sides>);

type <Object>_ Attribute_1> is .

type <Object> <Attribute 2> is .

function New <Object>
<Att-r bute 1> in <Object> <Attnibute 1>;
<Attricbute;2> in <Object>_<Attbute2>

<p)return <Object>;

-- i Description:.
creates a new <object> as a private type.

I Parameter Description:
- p<attribute_1>i..

<ate ..ttribute_2>
-<object> is the access to the private data rep resentawon.

procedure Give_<State_1>_To
A <Object>: in <Object>;
A"<Object> Side: in <Object>_Side_Name;
<AtState_>: in <Stte >_ype rb_>);

- IDescri~ption:
- I pces <statetype_1> on a specific side of a <object>.

, - I Parameter Description:
- a<object> is the <object> being acted on.
- a_<object>side is the side of the <object> to be updated
-I <state_typeI> i declared.

procedure Give_<State_2>_To
A-<Object>: in <Object>;
A_<Object>_Side: in <Object>_SideNames;
<AState 2>: in <StateType_2>);

-I Description:
S-i places <state_type_2> on a specific side of a <object>.

-- I Parameter Description.
- a_<object> is the <object> being acted on.

i -I a_<object>_side is the side of the <object> to be updated
I n <statetype.2> is declared ...

446 CMUSEI-87-TR-43

-p

~ .. ~%'%~% ~ %

.4,

function Get_<State 1>From
A_<Object> : in <Object>;
A <Object>_Side: in <Object>_SideNames
return <StateType_1>;

. -I Description:

" -- [Reads <statetype-1> available at a specific side of a <object>

- I Parareter Description:
I a_<object> is the <object> being acted on.

-- I a_<object>_side is the side being queried.
- i <state-type-l> is declared...

function Get_<State 2> From
A_<Object> :in <Object>;
A_<Object>_Side: in <Object>_SideNames
)return <State Type 2>;

r_ - Description:
- Reads <statetype_2> available at a specific side of a <object>.

-1I Paramseter Description:-
- a_<object> is the <object> being acted on.
- a_<obect>_side is the side being queried.
- <state type_2> is declared...

* . procedure Give_<Attribute_1>_To
A_<Object> :in <Object>;
<Attribute l> :in <Object>_<Attribute_1>);

"- . I Description:"

- Updates the state of <attribute_1> to correspond to current
- external conditions

- I Parameter Description:
-I A_<object> is the <object> to be updated
- I <attributeZ> is the new <object> -<attribute I>

function Get <Attribute_1>_From
A_<Object>: in <Object>
return <Object>_<Attribute_1>;

-- Description:
reads the state of <attribute l> to correspond to current

4' -.- external conditons.

- Parameter Description:
iJ - I A_<object> is the <object> to be updated

<attribute_1> is the current <attribute 1>

procedure Give <Attribute_2>_To
A_<Object> : in <Object>;
<Attribute_2> :in <Object> <Attribute_2>);

I Description:
Updates the state of <attribute2> to correspond to current

S.CMU/SEI-87-TR-43 47

%7 4

.~. V.. V

I external conduitio

-I Parameter Description:
I -- A<object> is the <object> to be updated

- <attribute_2> is the new <object>_<attribute2>

?'.

function Get_<Attribute 2> From(
A_<Object>: in <Object>

- i return <Object> <Attribute_2>;

I- Description:
-1 reads the state of <attribute2> to correspond to current
1- eterna condition.

-- i

-I Parameter Description:
- A <object> is the <object> to be updated

-. -1 <attribute 2> is the current <attribute_2>

*private
type <Object>_Representation;
type <Object> is acee <Object>_Representation;

-r. end <Object>_ObjectManager,

t ' ~ ~~~~~~~~ +++++* +++ ' € € ::":: ' 1+ ++++++ ++++++

pragma Page;

-4
44

-

III
.

* 4

6'S 48 CMUJ/SEI-87-TR-43

Z

-I Module Nam:
- I <object>_ObjectManager

- I Module Type:
-I Package Body

S.--... --........... ------- - - --------------------------------
- I Module Description:
- I Reads and manipulates private data structures that representA - I a <object>.

-I Notes:
-°I

S- I Modification History:
I ddMmmyy author Created

-1
"~- -- ----

". --I Distribution and Copyright Notice:
TBD

-I Disclaimer.
- "This work was sponsored by the Department of Defense.
- I The views and conclusions contained in this document are
-I solely those of the author(s) and should not be interpreted as
- I representing official policies, either expressed or implied,

S- I of the Software Engineering Institute, Carnegie Mellon
,.I University, the U.S. Air Force, the Department of Defense,

- I or the U.S. Government."

<package Object>_ObjectManager is

type Point-Representation is array (<Object>-SideName.) of ...

* - representation of a <object>

type <Object>_Representation is
reciord

Pointa: PointRepreeentation;
<Attribute_1>: <Object>_<Attributa.. 1>;

, <Attribute_2> : <Object>_<Attribute_2>;

* .' end record;

* 'pragma page;

i -"

t" CMU/SEI-87-TR-43 49

function Opposite-Side (ThisSide :in <Object>_SideNames
return <Object>_SideNames is

I De, ription:
-- I A function to find the opposite side of a Point.
- I Requests for information about one side depend
- I on the state of the <object> and information kept about
--I the other side.

- I Parameter Description..
-I thisside is the side for which the opposite is sought.
- I <object>sidenames is the opposite side.

- Notew
-- USED FOR CONTROL ELEMENTS SUCH AS CBs, RELAYs AND
-I SWITCHES

The_Side: <Object>_SideNames:= Side1;

begin

- select opposite side based on what this side is.

if ThisSide =Side l then
TheSide:= Side_2;

end if;

RETURN The_Side;

end OppositeSide;

function New_<Object>
<Attriute_l> : in <Object>_<Attributejl>;
<Attribute 2>: in <Object>_<Attributk_2>
)return <Object> is

- De cription.
-I creates a new <object> and returns an access to it.
- I

- I Parameter Description.
'. - i parameters are values for the attributes of <object>

- <object> returned is an access to the private type.

.e% -!. " -I Notew

INues the new opration to create record. The

I temporary variable used to hold the access while
I the attribute values or set makes the code
I easier to read.

TheNewObject : <Object>:= new <Object>_Representation;

begin
* TheNewObject.<Attribute_1>:= <Attribute 1>;

TheNew Obect.<Attribute_2> <Attribute_2>;

RETURN TheNewObject;

end New_<Object>;

pragms page;

50 CMU/SEI-87-TR-43

*1 '0 . :

procedure Give_<Statej>_To
A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_SideNames;
<A_State_1>: in <StateType_1>) is

. - I Description:
I-- places <state-type-l> on a specific side of an <object>.

--I Parameter Description:
- I a_<object> is the <object> being acted on.
-I a_<object>side is the side to be updated.

- I <state type_1> is declared...

begin

A_<Object>.Points (A_<Object>_Side)_Xx:= <AState_1>;

end Give_<State_1>_To;

procedure Give_<State_2>_To
A_<Object>: in <Object>;
A_<Object>_Side: in <Object>_SideNames;
<A_State_2>: in <StateType_2>) is

- Description.
-1 places <state Jype_2> on a specific side of an <object>.

-1 Parameter Description:
- a_<object> is the <object> being acted on.
-- a<object>_side is the side to be updated

I <state typ)e_2> is declared...

begin
. A._<Object>.Points (A_<Object>_Side).Yyy:= <AState_2>;

end Give_<State_2>_To;

pragma Page;

A CMU/SEI-87-TR-43 51

•~~~~ N"p @%, ,,# j '"""% . """ . """% . ',., , p - '% ,.-w . .
#'

% , . " % Z,,, p,
,

"% % % 1 " , " ,%

function Get_<State_1>-From
A..cObject>: in <Object>;
A_<Object>_Side: in <Object>_SideNames
return <StateType-1> is

I Description:
I reads <state-type-1> available at a specific side of an <object>.

-1 parameter Descriiption:
I a_<object> is the <object> being acted on.

-I a_.cobject> side is the side queried
-I <state-type-l> is declared..

4 The <State-Type-1> : <State..Type 1>;

begin
if A..<Object>.<Attribute 1> = Xxm then

The_<StateTypel> := A -<Object>.Points(
Opposite..Side (A..<Object>-.Side));

end if

RETURN The..<State-Type-1>;

end Get--State-Typel>_From;

function Get_<State_2> From
A -<Object>: in <Object>;
A-<Object>.Side : in <Object>.SideNames
return <StateType_2> is

- I Descriptiomu
- Ireads <state type 2> available at a specific side of an <object>.

-I parameter Description,-.
-I a-<object> is the <object> being acted on.
-I a_<object>..side is the side queried
-I <state_type_2> is declared..

The_<Stat..Tyrpe-2> :<State-Type 2>;

begin
if A - <Object>.<Attribute_2> = Yyyyyy then

The_<State Tpe2> :=A AObject>.Points

en i Opposite-Side (A.<Object>..Side));

RETURN The_<State-Type 2>;

end Get-<State Type-2>_From3;

pragina Page;

52 CMU/SEI-87-TR-43

procedure Give <AttributeI>_To
A_<Object>: in <Object>;
<Attribute 1> : in <Object>_<Attribute-1>) is

- I Description:
-- isets the volue of the state <attribute_1> in the record

-I representing the the <object>

- I Parameter Description.
- I a<object> is the <object> whose state is to be upda:ed
- I <attribute_1> is the new <object> <attributel>

I Notes:

begin
A_<Object>.<AttributeI>:= <Attribute_1>;

end Give_<Attribute1>_To;

function Get <Attribute 1> From
A_<Object>: in <Object>
return <Object>_<Attributel> is

- I Description:
- I reads the value of the state <attribute_1> in the record
- I representing the <object>

-I Parameter Description:
- I a_<object> is the <object> whose state is read
-I <attribute_1> is the current <attribute-1>U -,I

-- I Notes:
--I none

begin
RETURN A_<Object>.<Attribute _1>;

P end Get_<Attributel>_vom;

pragmga Page;

I -

i'1t CMU/SEI.87.TR-43 53

- -," " 'LLO ,'" - *' - fi ''~# ' ' , .'','' -"'.".'.' "J Jf -""

/I

procedure Give_<Attnbute_2>_To
A_<Object> :in <Object>;
<Attribute_2> :in <Object>_<Attribute_2>) is

I-- Decription:J
- sets the ualue of the state <attribute_2> in the record

I-- representing the the <object>

-I Parameter Description:]
- a <object> is the <object> whose state is to be updated
-1 <attribute_2> is the new <object> <attribute_2>
-1

1-I Notes.

begin
A_<Object>.<Attribute_2>:= <Attribute_2>;

end Give_<Attribute_2>_To;

." function Get_<Attribute 2>_From
A_<Object> : in <Object>

*-) return <Object>_<Attribute_2> is

- I Decription:
- I reads the value ofthe state <attribute2> in the record
-1 representing the <object>

r -I Parameter Description.
-. i a_<object> is the <object> whose state is read
- <attribute_2> is the current <attribute_2>

-I Notes:
-I none

begin
RETURN A_<Object>.<Attribute-2>;

end Get.<Attribute -2>F'rom

end cObject>_Okject.Manager;.

54 CMU/SEI-87-TR-43

r.

Appendix C: Engine code

The Ada code that follows implements a simulator Engine system. The implemen-

tation is complete only through the package specifications. The intent is to demonstrate the

software architecture defined by the object paradigm discussed in Chapter 4.

C.1. Package GlobalTypes

.-- Module Name. .

-- Module Type:
Package Speci/Icattwn

- Module Purpose:
proJ Lde global types for use throughout the simulator code

-1 Module Description: %
-his package provides global types for use throughout the simulator

code. The types include those necessary for compliance with the
Boeing ASVP Ada code.

- I Type Execution-Sequence defines the frames to be used by the
- ezecutives during the cyclic eecution of the code.

References:

-- Design ouwis-.I none j'

-I User's ManuaL" /.-,,
-i none

- I Testing and Vaidjlion..
.4 none

- I Notes;
n none

--------- I-------------------------------- -------
- I Modification History:
-- I 24Apr87 ki created

-- I Distribution and Copyright Notice:
--I TBD

CMU/SEI.87.TR.-43 55

-- I Disclaimer.
I-- 'This work was sponsored by the Department of Defense

-I The views and concluswns contained in this document are
-I solely those of the outhor(s) and should not be interpreted as
- representing official policies, either expressed or implied,

", - (of the Software Engineering Institute- Carnegie Mellon University,
i the U.S. Air Force, the Department of Defens, or the U.S. Government."

package Global-Types is

type ExecutionSequence is
Frame_I_ModulesAreExecuted,
Frame_2_ModulesAreExecuted,
Frame_3_Modules AreExecuted,
Frame_4_ModulesAre Executed,
Frame_5_ModulesAreExecuted,
Frame_6_ModulesAreExecuted,
Frame..7Modules_AreExecuted,
Frame_8_Modules_Are_Executed

end Global Types;

C.2. Package StandardEngineering_Types

- Module Nam:
- I Standar EngineeringTypes

-1 Module Type:
- I Package Specfication

- Module Purpose:
- This package defines some standard engineering symbols and units
- I which are used in the FlightSystem.

- I Module Deazc-iptios
-I 7he standard engineering symbols, their range and units of measure

V - I are specified in this package. All objects and types in the
- I flight-system which are represented in the real world in these units
- should be derived from these types. New derived types can be expressed
-I as follows:

-..." - I type My.Blark is new StandardEngineeringTypes.Blark;

-IReference.:

-I Design Documents.'

-1 UtSManUakL

- Testing and Validation:
-4 none

I Notes:
- none

I Modi#cation History.:
- 25Aug87 cpp created

-.I Distribution and Copyright Notice:

,5 CM/SE-87-TR-43

-- TBD

--I Disclaiter.
-- "This work was sponsored by the Department of Defense
-I The views and conclusions contained in this document are
-I solely those of the author(s) and should not be interpreted as
-I representing official policies, either expressed or implied,

I of the Software Engineering Institute, Carnegie Mellon University,
-I the U.S. Air Force, the Department of Defense, or the U.S. Government."

package StandardEngineeringTypes is

type Pressure is digits 6 range 0.0.. 10000.0;
- pounds per square inch

type Temperature is range 300.. 3000;
- degrees Rankine

type Air-Flow is digits 4 range 0.0 .. 500.0;
- pounds per second

type Fuel-Flow in digits 2 range 0.0 .. 5.0;
-- pounds per second

type Thrust is digits 6 range 0.0.. 20250.0;
-pounds

type Rpm is range 0 .. 20000;
- revolutions per minute

type Torque is range 0.. 10000;
- pound feet

end StandardEngineeringTypes;

C.3. Package BleedValveObject_Manager

-1I Module Name:
- I BleedVale-ObjectManager
-IA
I Module Type:
I - Package Specification

I- Module Purpoe:
- I This package manages objects which simulate the
- I Engine BleedValve for the C-141 simulator.
- I This management entails creation of Engine BleedValve objects,

update and maintenance of its state, and finally state
- I reporting capabilities.
I-------------- -------------------------------

- I Module Description:
-- I The Engine BleedValue object manager provides a means to create
- a Bleed-Valve object via the NewBleedValve entry and returns
-I an identification for the BleedValue, which is to be used when
-, updating/accessing the BleedValve objects state as described below.
-I

-,I The Engine Bleed-Valve object manager provides a means to update the
- I state of the object via the:
- 1) Give_Inlet_AirFlowTo
-1 2) Give-DischargePressureTo
-1 entries, requiring the following external state information:

1) Inlet AirFlow pounds per second
- 2) Discharge-P'essure pounds per square foot

- I Th7e Engine Bleed Valve object manager provides a means of obtaining
s -. I state information via the:

CMU/SEI-87-TR-43 57

-N-. -**. ... %1-%r.^%'w . . . '*". ""'? ' 0% . P* >

3) GetInlet_PressureFrom
-1 4) Get Discharge.AirFlow_From
-- I entries, yielding the folio ving internal state information:
- I 3) InletPressure pounds per square foot
- I 4) DischargeAirFlow pounds per second

-1 References:
-1I Design Documents:

- none

-I User's Manual:
- none

-I

- Testing and Validation:
-- I none
-- I

- I Notes:
- none

--

- I Modification History:

- 27Aug87 cpp created
-I

--------- -----... -..-.-.-.-----------------------

- I Distribution and Copyright Notice:
-I TBD
-I

- I Disclaimr.
- IThis work was sponsored by the Department of Defense.
I The views and conclusions contained in this document are

- I solely those ofthe author(s) and should not be interpreted as
i representing official policies, either expressed or implied,
I of the Software Engineering Institute, Carnegie Mellon University,

Sthe U.S. Air Force, the Department of Defense or the U.S. Government."

with StandardEngeering_Tpes;

package BleedValveObjectManager is

type Bleedalve in private ;.. a BleedValve is an abstraction of a
- Bleed_Valve within a Engine.

function NewBleedValve return Bleed Valve;

- Description.
- This function returns a pointer to a new Bleed Valve object
--I representation. This pointer will be used to identify
- I the object for state update and state reporting purposes.

- Parcmeter Description.
- return Bleed_Valve

-I Pointer to a BleedValve object.

procedure GiveInletAirFlowTo(
ABleedValve in BleedValve;
GivenjnletAirFlow in Standard-Engineering-Typea.Air-Flow

-- I Description:
I Initiates a change in the specified Bleed_Valve object's

-- I state given the InleAirFlow.

58 CMU/SEI-87-TR-43

N ,%S e , ,"".

Io.-

-- I Parameter Description:
.. I A_BleedValve
-- I Identifies the BleedValve whose state is to be changed.
-- Given InletAirFlow
- Is the Inlet Air.Flow, in pounds per second,
-- which is to affect the state of the Bleed Val'e object.

procedure Give_Discharge_PressureTo(
A_Bleed_Valve in Bleed-Valve;
GivenDischargePressure: in StandardEngineenngTypes.Pressure

-- I Description:
-- I Initiates a change in the specified Bleed-Valve object's
-- I state given the DischargePressure.

- Parameter Description:
I-- ABleedValve

" -- I Identifies the Bleed-Valve whose state is to be changed.
I GivenDischarge-Pressure

- I Is the DischargePressure, in pounds per square foot,
- which is to affect the state of the Bleed-Valve object.

* function Get InletPressureFrom(
* - A.Bleed_Valve : in Bleed_Valve

)return StandardEngineering_Types.Pressure;

- I Description:
-- Initiates a report of the specified Bleed_Valve object's
-I state returning the Inlet_Pressure.
- I
-I Parameter Description:
-I A_BleedValve
- I Identifies the BleedValue whose state is needed.
- I return Pressure
- Is the Iniet_Pressure portion of BleedValve object's state,
- I in pounds per square foot, which is to be reported on.

-. function GetDischargeAir_FlowFrom(
-*." A_Bleed_Valve : in Bleed_Valve

return Standard Engineering_TypesAirFlow;

-I Description:
- Initiates a report of the specified Bleed-Valve object's

I state returning the DischargeAirFlow.

* .. I Parameter Description:
-- I A_BleedValve

I Identifies the Bleed_Valve whose state is needed.
I return AirJlow

- I Is the DischargeirFlow portion of Bleed-Valve object's state,
- I in pounds per second, which is to be reported on.

private
type BleedValveRepresentation; - incomplete type, defined in

-- package body
type Bleed -Valve is access BleedValveRepresentation;

- pointer to a Bleed-Valve representation
,'., end Bleed Valve Object Manager,

.CMU/SEI-87-TR-43 59

<-...,.,..,..:,.. ..,: .:...:..,.. ..:,.. : . .: ,..-....:. .. :.. ..-...-. ,,.,.:.,,-....-,.. > ,.-. ,.. N %,,-

94

C.4. Package BurnerObjectManager

Module Name:
-i BurnerObjectManager

-I Module Type:
-I Package Specification

- I Module Purpose:
- I This package manages objects which simulate the
-1 Engine Burner for the C-141 simulator.
-. I This management entails creation of Engine Burner objects,
- update and maintenance of its state, and finally state
- I reporting capabilities.

-I Module Description:
-- I The Engine Burner object manager provides a means to create
-I I a Burner object via the NewBurner entry and returns
-- an identification for the Burner, which is to be used when
-1 updating/accessing the Burner objects state as described below.

- I The Engine Burner object manager provides a means to update the
-- I state of the object via the:
-1 1) Give_Inlet_AirTo
-- 2) GiveFuel_FlowTo
-i 3) GiveSparkTo

entries, requiring the following external state information:
1) InletPressure pounds per square inch

- I InletTemperature degrees Rankine
InletAirFlow pounds per second

- 2) Fuel_low pounds per second
- 3) Spark joules

-I The Engine Burner object manager provides a means of obtaining
-. I state information via the:
- 4) Get Discharge.Air From
-I entries, yielding the following internal state information:
-- I 4) DischargePressure pounds per square inch

Discharge-Temperature degrees Rankine
- I Discharge..AirFlow pounds per second

- I References:,
-I Design Documents:
-I none
- I

User's Manual:
-I none
-I

-I Testing and Validation:
- I none

-I Notes:
-I none
-I

-I-------- ---- - -----------------------

-I Modification History:
-- 24Aug87 cpp created

- --I ..

-- I Distribution and Copyright Notice:
I TBD

Disclaimer.
-I "This work was sponsored by the Department of Defense. '

60 CMU/SEI-87-TR-43

-.1 ,4 *W. *~ * , *% *

The views and conclusions contained in this document are
solely those of the authoris) and should not be interpreted as
representing official policies, either expressed or implied,
of the Software Engineering Institute, Carnegie Mellon University,
the U.S. Air Force, the Department of Defense, or the U.S. Government.

with Standard_ Engineenng Types;

package Burner Object_Manager is

type Burner is private ;- a Burner is an abstraction of a
- Burner within a Engine

type Spark is range (None, Low, High);

function New-Burner return Burner,

-i Description:
This function returns a pointer to a new Burner object

-- representation. This pointer will be used to identify
- I the object for state update and state reporting purposes.

- I Parameter Description:
-- I return Burner

-- i Pointer to a Burner object.

procedure GiveInletAirTo(
A-Burner :in Burner;
Given -Inlet -Pressure : in StandardEng .neerng._Tyvpes.ressure;

GivenInletTemperature : in StandardEngineering.Types.Temperature;
GivenInletAirFlow :in StandardEngineeringTypes-Ar_Flow

- i

-I Description:
- Initiates a change in the specified Burner object's

SI state given the Inlet_Pressure, InletTemperature,
and the InLetAirFlow.

I Parameter Description:
- ABurner

Identifies the Burner whose state is to be change&
GivenInletPressure

- Is the Inlet -Pressure, in pounds per square inch,
-- t which is to affect the state of the Burner object.
"- GivenInietTemperature
. I Is the InletTemperature, in degrees Rankine,

- which is to affect the state of the Burner object.
-I r GivenInletAirFlow

I- is the Inlet_ irFlow, in pounds per second,
-- which is to affect the state of the Burner object.

procedure GetDischargeAirFrom(
A-Burner :in Burner;
Returning_DiachargePressure : out StandardEngineeringTypes.Pressure;
Returning_DischargeTemperature: out StandardEngineering Types.Temperature;

/ ReturningDmicharge_AirFlow :out Standard-EngineeringTypes.Air Flow

- Description:
I Initiates a report of the specified Burner object's

" CMU/SEI-87-TR-43 61

% %' , .. •" ." ," ." -" ."." -" .%" - %%% % " "

I-- state returning the Discharge-Pressure,
- Discharge-Temperature, and the Discharge AirFlow.

- Parameter Description:
-.-- ABurner

Identifies the Burner whose state is needed.
I- - ReturningDischargePressure

.. I Is the Discharge-Pressure portion of Burner object's state,
-- I in pounds per square inch, which is to be reported on.
-- I ReturningDischargeTemperature
" I Is the Disc'argeTemperature portion of Burner object's state, I
-I in degrees Rankine, which is to be reported on.
- Returning_Discharge_AirFlow
-- Is the DischargeAirFlow portion of Burner object's state,
- in pounds per second, which is to be reported on.

procedure GiveFuelFlowTo(
-" A Burner in Burner,

Given FuelFlow in Standard EngineeringTypes.FuelFlow

- Description:
-I Initiates a change in the specified Burner object's
-' I state given the Fuel-Flow.

I Parameter Description:
-I ABurner

I Identifies the Burner whose state is to be changed.
-- GivenFuelFlow
-- Is the Fuel Flow, in pounds per second,
I which is to affect the state of the Burner object.

procedure GiveSparkTo(
A_Burner : in Burner;,
Given_Spark :in Spark

- Description:
"' I Initiates a change in the specified Burner object's
- I state given the Spark.

, -- I Parameter Description:
-- I A-Burner
-- I Identifies the Burner whose state is to be changed.
- I Given-Spark
-I Is the Spark, injoules,

I -which is to affect the state of the Burner object.

private
type BurnerReprese? Lon; -- incomplete type, defined in

- package body
type Burner is accea. BurnerRepresentation;

-- pointer to a Burner representation
end BurnerObjectManager

It

62 CMU/SEI-87-TR-43

% % %V -. ,,,,,.,L .-. ,. - . - ... ,-. - - . .-.,." ."----'-.
V. , : ' , : , - " :.,: . . , ,, ., . - . ' e - - ~= ,: L

'

C.5. Package Diffuser_ObjectManager

-- I Module Name:
-I DiffuserObjectManager

- I Module Type:
- Package Specification
-- I

-- I Module Purpose:
- I This package manages objects which simulate the
-I Engine Diffuser for the C-141 simulator.
-- I This management entails creation of Engine Diffuser objects,
-- ! update and maintenarce of its state, and finally state
-I reporting capabilities.

-1 Module Description
-1 The Engine Diffuser object manager provides a means to create
- a Diffuser object via the New _Diffuser entry and returns
-- I an identification for the Diffuser, which is to be used when
-I updating /accessing the Diffuser objects state as described below.
- I
- The Engine Diffuser object manager provides a means to update the
-1 state of the object via the:
- I1 GiveInletAirTo
-I 2) GiveMachNumber-To
-- I entries, requiring the following external state information:
- 1) Inlet-Pressure pounds per square foot
- Inlet-Temperature degrees Rankine
-1 2) Mach_Number <dimensionless>

-1 The Engine Diffuser object manager provides a means of obtaining
- state information via the:
- 1 3) Get_,DischargeAirFrom
-1 entries, yielding the following internal state information:

* -1 3) Discharge-Pressure pounds per square foot
-1 DischargeTemperature degrees Rankine
-1 DischargeAir_Flow pounds per second
-1
- I Referencear
- Design Documents:
-I none

- User's Manual:
-I none

-1 Testing and Validation:
-I none

-I Nateu.
-Inone- Ne

-I Modification History
25Aug87 cpp created

-I Distribution and Copyright Notice:
TBL)

, Disclaimenr
.•-- "This work was sponsored by the Department of Defense.

- 1 The views and conclusions contained in this document are
- I solely those of the author(sj and should not be interpreted as
- I representing official policies, either expressed or implied,

* CMU/SEI-87-TR-43 63

Lr No F 7

of the Software Engineering Institute, Carnegie Mellon University,
the U.S. Air Force, the Department of Defense, or the U.S. Government."

with Standard Engineenng-Type;

package Diffuar_ObjectManager is

type Diffuser is private; -- a Diffuser is an abstraction of an
- Diffuser within a Engine.

type Mach-Number is digits 3 range 0.00.. 1.00;
- <dimensionless>

function NewDiffuser return Diffuser,

- Nac riptioL
- Th&s function returns a pointer to a new Diffuser object
- representation. This pointer will be used to identify

the object for state update and state reporting purposes.

- Pora~ter Description.
- return Diffuser

Pointer to a Diffuser object.

procedure Give_[nletPreure To(
A_Diffuser :in Diffuser
GivenInletPressure : in StandardEngineeringTypa.Presure;
GivenInletTemperatume : in StandardEngineeringType.Temperature

-i Description:
- 4 Initiates a change in the specified Diffuser object's
- t state given the Ine.tPressure, and InletTemperature.

- I Parameter Description:
- AjDiffiser
,- Identifies the Diffuser whose state is to be changed.

- Given_jnletPressure
-Is the InlttPressure, in pounds per square foot,
- I which is to affect the state of the Diffuser object. i
- I Given-nletTemperature
- i Is the InletTemperature, in degrees Rankine,

which is to affect the state of the Diffuser object.

procedure GiveMach_NumberTo(
A-Diffuser : in Diffuser,
Given_MachNumber : in Mach_Number

- Description:

Initiates a change in the specified Diffuser object's
state given the MahNumber.

-I

- I Parameter Description:
- [A Diffuser A

Identifies the Diffuser whose state is to be changed.
-. i Given MachNumber

Is the Mach-Number, in <dimensioniess>,
which is to affect the state of the Diffuser object.

64 CMU/SEI-87-TR-43

[:. ,....o. ,_

- procedure GetDischargeAirFrom(
A-Diffuser in Diffuser,
Returmng.Discharge Pressure: out StandardEngineen ngTypes.Pressure;
ReturningDischargeTemperature: out StandardEngineering_Types.Temperature;

, . Returning_DischargeAirFlow : out StandardEngneering_Types.Air Flow

% I Description:
- Initiates a report of the specified Diffuser object's
- I state returning the Discharge-Pressure and Discharge-Temperature.

I Parameter Description:
-- ADiffuser

. -.- I Identifies the Diffuser whose state is needed.
S- ; ReturnngDischargePressure

- Is the Discharge Pressure portion of Diffuser object's state,
- i in pounds per square foot, which is to be reported on.
- ReturningDischargeTemperature

Is the DischargeTemperature portion of Diffuser object's state,
in degrees Rankine, which is to be reported on.

"- - I ReturrungDischargeAir Flow
Is the DischargeAirFlow portion of Diffuser object's state,

-- in pounds per second, which is to be reported on.

private

eDiffuser_Representation; - incomplete type, defined in
, . - package body

type Diffuser is access DiffuserRepresentatior
-pointer to a Diffuser representation

end DiserObjectManagr,

:.j C.6. Package ExhaustObjectManager

if - IModule Now
- I ExhaustObject-Manager
-I

- I Module Type:
- I Package Specification

-S. - I Module Purpose:
- I This package manages objects which simulate the
- I Engine Exhaust for the C-141 simulator.

This management entails creation of Engine Exhaust objects,
I update and maintenance of its state, and finally state
I reporting capabilities.
---- ----------- ---- - ----

- I Module Description-
-1 The Engine Exhaust object manager provides a means to create
-- I an Exhaust object via the New-Exhaust entry and returns
- I an identification for the Exhaust, which is to be used when
- updating/ accessing the Exhaust objects state as described below.

- The Engine Exhaust object manager provides a means to update the
-I state of the object via the:

. - 1) Give InletPressureTo
- entries, requiring the following external state information:
-- 1) Inlet Pressure pounds per square inch

-I The Engine Exhaust object manager provides a means of obtaining
, -- I state information via the:

- CMU/SEI-87-TR-43 65

. .

- I 2) GetDischargeThrustFrom
-I 3) GetEGTFrom
-1 4) Get EPRFrom
- I entries, yielding the following internal state informatwn:

I 2) DischargeThrust pounds
- I 3) EGT degrees Rankine
- 4) EPR <dimensionless>

- I References:
- Design Documents:
- I none

- I User's Manual:
- I none

- Testing and Validation:
-~none

- I Notes:
-Inone

- i

I Modification Histor-y
-I 25Aug87 cpp created
--I

-I Distribution and Copyright Noti:.
-I TBD

- I Disclaime-
I "is work was sponsored by the Department of Defense
I The views and cnclusions contained in this document are

-- solely those of the author(s) and should not be interpreted as
- I representing official policies, either expressed or implied,
- I of the Software Engineering Institute, Carnegie Mellon University,
- the U.S. Air Force, the Department of Defense or the U.S. Government"

with Standar&_EngneeruNL&Types;

package Exha tObjectManager is

type Exhaust in private; - an Exhaust is an abstraction of an
- Exhaust within an Engine.

type Epr is digits 2 range 1.2.. 2.3;
- <dimensionlPss>

function NewExhaust return Exhaust;

-I Description.
-I This function returns a pointer to a new Exhaust object
- I representation. This pointer will be used to identify

I the object for state update and state reporting purposes.

- I Parameter Description.
I return Exhaust

- I Pointer to an Exhaust object.

procedure GivenletPressureTo(
A Exhaust in Exhaust;
GivenInletPressure in Standard-EngineeringTypes.Pressure

66 CMUISEI-87-TR-43

'"

L

-- Description:
.I Initiates a change in the specified Exhaust object's

-- state given the InletPressure.

-1 Parameter Description:
-- A Exhaust
-1 Identifies the Exhaust whose state is to be changed.
-1 GivenInletPressure

-1 Is the Inlet Pressure, in pounds per square inch,
-1 which is to affect the state of the Exhaust object.

function Get_Discharge Thrust From(
AExhaust : in Exhaust
)return StandardEngineeringTypes.Thrust;

I Description:
I Initiates a report of the specified Exhaust object's

-1 state returning the DischargeThrust
-1I

-- Parameter Description:

-1 A-Exhaust
t-. -1 Identifies the Exhaust whose state is needed.

-1 return Thrust
- I Is the Discharge-Thrust portion of Exhaust object's state,
"- - in pounds, which is to be reported on.

function GetEgt_From(
A_Exhaust :in Exhaust
) return StandardEngineering-Types.Tempersatre;

-I Description:
-1 Initiates a report of the specified Exhaust object's

S-1 state returning the EGT.

-1 Parumeter Description:
-1 AExhaust
-1 Identifies the Exhaust whose state is needed.
-1 return EGT
- Is the EGTportion of Exhaust object's state,
- in degrees Rankine, which is to be reported on.

function GetEpr)'rom(
A_Exhaust in Exhaust
)return Epr;,

- I Descripiom-
-- I Initiates a report of the specified Exhaust object's
-I state returning the EPR

- I Parameter Description:
-I AExhaust
- I Identifies the Exhaust whose state is needed.
-I return EPR
- I Is the EPR portion of Exhaust object's state,
.- I in <dimensionless>, which is to be reported on.

private
type ExhaustRepresentation; -- incomplete type, defined in

- package body
'. type Exhaust is sees" ExhaustRepresentation;

CMU/SEI-87-TR-43 67

--% %"% "

-- pointer to an Exhaust representation
end ExhaustObjectManager;

C.7. Package FanDuctObjectManager

- Module Name:
- I FanDuctObjectManager

-I Module Type:
- Package Specfication

-- I Module Purpose:
- This package manages objects which simulate the
- Engine Fan-Duct for the C-141 simulator.
- This management entails creation of Engine FanDuct objects,

- update and matntenance of its state, and finally state Q
-- I reporting capabilities.

I Module Description:
- I The Engine FanDuct object manager provides a means to create
- a Fan-Duct object via the NewFan.Duct entry and returns
- an identification for the Fan-Duct, which is to be used when
- I updating/accessing the Fan-Duct objects state as described below.

. The Engine Fan_Duct object manager provides a means to update the
- state of the object via the:
-I 1) GieIndet_PressureTo
- I entries, requiring the following external state information:
- I 1) Inlet_Pressure pounds per square inch

-I The Engine Fan_-Duct object manager provides a means of obtaining
- state information via the.
-I 2) Get Discharge Thrust-From
- I entrges, yielding the following internal state information:
- 2) Discharge_Thrust pounds
- I

- Refer encs:
- I Design Documents:
-I none

- User's Manual:

I Testing and Validation:
-I none
- I

-I Notes:
- none

- Modification History.
- I 25Aug87 cpp created

- I Distribution and Copyright Notice:
-I TBD

- I Disclainser-
-- I 'This work was sponsored by the Department of Defense.
- I The views and conclusions contained in this document are
- I solely those of the author(s) and should not be interpreted as
- I representing official policies, either expressed or implied,

68 CMU/SEI-87-TR-43

of the Software Engineering Institute, Carnegie Mellon University,
the U.S. Air Force. the Department of Defense, or the U.S. Government.

with Standard..ngieersngTys;

package Fan DuctObject-Manager is

type Fan-Duct is private; - a FanDuct is an abstraction of a
- FanDuct within a Engine.

function New Fan Duct return Fan_Duct;

-- I Description:
- This function returns a pointer to a new Fan Duct object
- I representation. This pointer will be used to identify
- the object for state update and state reporting purposes.

- I Parameter Description.
-I return FanDuct
- I Pointer to a FanDuct object.

procedure GiveJnlet_PresureTo(
A_FanDuct in Fan Duct;
Given InletPressure : in StandardEngineeringTypes.Pressure

- Description:
-I Initiates a change in the specified Fan Duct object's
- r state given the InletPressure.

- I Parameter Description:
-I AFan.Duct
- I Identifies the FanDuct whose state is to be changed
-i Given.jnletPressure
-I Is the InletPressure, in pounds per square inch,
- I which is to affect the state of the FanDuct object.

function GetDichargeThrust_From(
A_FanDuct in FanDuct
return StandardEngineering.Types.Thrumt;

I Description.
- Initiates a report of the specified Fan-Duct object's
- I state returning the DischargeThrust.
- I

- I Parameter Description:
-I AFanDuct

Identifies the FanDuct whose state is needed.
return Thrust
Is the DischargeThrust portion of FanDuct object's state,

I in pounds, which is to be reported on.

U private
type FanDuctRepresentation; -- incomplete type, defined in

- package body
type Fan-Duct is access Fan DuctRepresentation;

--pointer to a Fan-Duct representation
end FanDuctObjectManager,

* CMU/SEI-87-TR-43 69

p 4 ,W 0 r-. 47FP.

C.8. Package RotorlObjectManager

-I Module Name:
-I RotorlObject Manager

I Module Type:
- Package Specification
- I

- Module Purpose:
- This package manages objects which simulate the
- I Engine Rotorl for the C-141 simulator.
- This management entails creation of Engine Rotori objects,
- update and maintenance of its state, and finally state
-. reporting capabilities.

- I Module Description:
-- The Engine Rotorl object manager provides a means to create
i a Rotorl object via the NewRotorl entry and returns

- I an identification for the Rotorl, which is to be used when
- updating/ accessing the Rotorl objects state as described below.

-- I The Engine Rotorl object manager provides a means to update the
-- I state of the object via the:
- 1 1) Give_Fani_InletAirTo
-1 2) GiveTurbinelInlet.AirTo

- 1 entries, requiring the following external state information:
- F 1) FanlInletPressure pounds per square inch
- I FanlInletTemperature degrees Rankine

I-- Fani InletAir_,Flow pounds per second
1--F 2) TurbinelInletPressure pounds per square foot

-I Turbinel_InletTemperature degres Rankine
- I TurbinelInlet.AirFlow pounds per second
-F
- The Engine Rotorl object manager provides a means of obtaining
- F state information via the:
- F 3) Get..Fanl._Discharge..AirFrom
- F 4) GetTurbineIDischarge.AirFrom
-1 5) GetRPMFrom
-F 6) GetVibrationFrom
- F entries, yielding the following internal state information:
- F 3) Fanl.DichargePressure pounds per square inch
- F FanlDischargeTemperature degrees Rankine
- F FanlDischargeAir_Flow pounds per second
.F 4) TurbineljDischargePresure pounds per square foot

- I TurbinelDischargeTemperature degrees Rankine
- Turbinel_DischargeAirFlow pounds per second
- 5) RPM rpm
-F 6) Vibration mils
--F

- I References:
- F Design Documents:
-F none

- User's Manual:
-F none

IF Testing and Validation:
-F none

-- I Notes:
-Fnone

r - I Modiffcatian History.

70 CMUISEI.87-TR-43

9.% 9. N5. ,% N, '." N - % - ' .. , - - ..

N

. -

25Aug87 cpp created

t - I Distribution and Copyright Notice:
- TBD

- I Disclaime:
-- I This work was sponsored by the Department of Defense.
- I The views and conclusions contained in this document are
-I solely those of the author(s) and should not be interpreted as
- I representing official policies, either expressed or implied,
- i of the Software Engineering Institute, Carnegie Mellon University,
- I the U.S. Air Force, the Department of Defense, or the U.S. Government."

with StandardEngineeringTypes;
-'

package RotorlObjectManager in

type Rotori is private; -- a Rotorl is an abstraction of a
-- Rotor) within a Engine.

type Vibration in range 0.5;
-mils

function New Rotorl return Rotorl;
._

-

- I Descriptior-
- I This function returns a pointer to a new Rotorl object
- I representation. This pointer will be used to identify
-I the object for state update and state reporting purposes.

- I Parameter Description
I return Rotori

- I Pointer to a Rotorl object.

procedure GiveFal Inlet_AirTo(
A Rotorl : in Ratorl;
Given Fanl Inlet Preaure : in StandardEngineeringType.Preure;
GivenFanl_InletTemperature : in StandardEngineeringTypee.Temperature;

, i. GivenFanl Inlet Air Flow: in StandardEngineeringTypesAirFlow

-I Description:
- Initiates a change in the specified Rotorl object's

_, -I state given the FanlInlet_Pressure, FanlInletTemperature,
-- I and the Fan Inlet AirFlow.

- I Parameter Description:
- I ARotorl
-- I Identifies the Rotorl whose state is to be changed.

I Given_,anl Inlet Pressure
- I Is the FanlInletPressure, in pounds per square inch,

" - I which is to affect the state of the Rotor1 object.
.-I GivenFan1 InletTemperature
- Is the Fanl_Inlet_Temperature, in degrees Rankine,

I which is to affect the state of the Rotor) object.
S--I Given FanIInlet AirFlow

* -- I Is the Fan_Inlet_Air-Flow, in pounds per second,
-- I which is to affect the state of the Rotorl object.

P it-
*CMU/SEI-87-TR-43 71

5,*

-. .- -. , -. 7. , -d

procedure GetFanl-DisargeAirYrom(
ARotorl ixn Rotorl;
Returningj_'anlDischarge-Pressure :out StarEngneenngType.Pressure;
ReturningFanl-Discharge-emperature: out Standard_Engneering-.Types. Temperature;
ReturningFanl-Discharge-Air-low :out StandardEngineernngTypes.AirFlow

I Description:
-I Initiates a report of the specified Rotori object's
I- state returning the Fanl-Discharge-ressure,

- Fan lDischargeemperature, and the Fani jischargeAir-Flow.

I Parameter Description:
-I A-Rotorl
I Identifies the Rotori whose state is needed.
I Returning.FanlDischarge-ressure

-I Is the Fan 1 Discharge.Pressure portion of Rotorl object's state,
I* in pounds per square inch, which is to be reported on.

N - I Returning-janltDischarge-Temperature
-I Is the Fan 1-Discharge..Temperature portion of Rotori object's state,

-I in degrees Rankine, which is to be reported on.
I Returnng.Fanl.Discharge,4ir-Flow

-I Is the Fanl.Discharge-Airflow portion of Rotori object's state,
I in pounds per second, which is to be reported on.

procedure Give-urbinelInletAr-To{
ARotori :in Rotori;
GivenTurbinel1.jxlet_reaesure :in Standard-EnineinType.Pressure;
GivenTurbinel 1Inlet...Temperature: in Stndard-Engineering-Types.Temperature;
GivenTurbine 1_het._AirFlow :in Standard -Engineerng.Typee.Air Flow

-I Description:
I Initiates a change in the specified Rotori object's

- I state given the Turbinel-InietPressure, Turbinel_InletTemperature,
'/- I and the Turbinel Jniet..AirFlow.

I Parameter Description:
I ARotor1

-I Identifies the Rotori whose state is to be changed&
I Given-Turbi nel Inlet.Pressure

-I Is the TurbinelIrdtPressure, in pounds per square inch,
%- which is to affect the state of the Rotori object.

I Given-TurbineiInletTemperature
I Is the TurbinelInletTemperature, in degrees Rankine,

-I which is to affect the state of the Rotori object.
I Given_-Turbinel-Inlet-.Air Flow
I . Is the TurbineljInletAirjow, in pounds per second,

-I which is to affect the state of the Rotori object.

procedure Get_.Turbmnel.DiechargeAirFrom(
*A-Rotorl An Rotorl;
p ReturningTurbinel-Dischsrge-resaure :out Standard_.EnginseringTypes.Pressure;

Raturningurbinel-Discharge.Temperature: out StandardEngineeringTypes.Temperature;
*ReturningTurbinel-Discharge Air _Flow :out StandardEngineern-TypesAir Flow

-I Description:
-I Initiates a report of the specified Rotori object's

I state returning the Turbinel-DischargePmssure,

-I Turbinel-Discharge-Temperature, and the Turbinel.DischargeJ4irFlow.

I Parameter Description:

72 CMU/SEI 87-TR-43

t

°k -- A RotorI
Identifies the Rotor1 whose state is needed.

ReturningTurbinelDischargePressure
- Is the TurbinelDischargePressure portion of Rotorl object's state.
-- in pounds per square inch, which is to be reported on.
- Returning TurbinelDischarge-Temperature
-- Is the Turbinel_Discharge_Temperature portion of Rotor1 object's state.
-- in degrees Rankine, which is to be reported on.
-- ReturningTurbinel_DischargeAirFlow
-- Is the Turbinel_Discharge_AirFlow portion of RotorZ object's state,
-- in pounds per second, which is to be reported on.

function GetRpm_From(
A_Rotorl :in Rotorl
return Standard_Engineering_Types.Rpm;

-. I Description:
-- Initiates a report of the specified Rotor1 object's

state returning the RPM.

I Parameter Description:
- ARotorl

I. Identifies the Rotor whose state is needed.
-- return RPM

-- Is the RPM portion of Rotor1 object's state,
- in rpm, which is to be reported on.

function Get Vibration From(
A_Rotorl :in Rotorl
)return Vibration;

-1I Description:
• .- 1 Initiates a report of the specified Rotor1 object's

• ,.-1 state returning the Vibration.

- Parameter Description:
-I ARotorl
- Identifies the Rotori whose state is needed.
-I return Vibration
-- I Is the Vibration portion of Rotori object's state,
-I in mils, which is to be reported on.

private
type RotorlRepresentation; -- incomplete type, defined in

- package body
type Rotorl is access Rotor _Representation;

-- pointer to a Rotori representation
end Rotor 1_Object Manager,

C.9. Package Rotor2_ObjectManager

-I Module Name:
- I Rotor2 ObjectManager

I Module Type:
I Package Specification

I Module Purpose:

CMU/SEI-87-TR-43 73

.. . ..*

-- This package manages objects which simulate the
- Engine Rotor2 for the C- 141 simulator.

I This management entails creation of Engine Rotor2 objects,
-I update and maintenance of its state, and finally state
-- I reporting capabilities.
--

- I Module Descr-iption.
- I The Engine Rotor2 object manager provides a means to create
.- I a Rotor2 object via the New Rotor2 entry and returns
- I an identification for the Rotor2, which is to be used when
-I updating /accessing the Rotor2 objects state as described below.

- I The Engine Rotor2 object manager provides a means to update the
-I state of the object via the:
- 1) Give_Fan2_InletAirTo
-. I 2) Give_Turbine2_InletAirTo
-1 3) GiveTorqueTo
- I entries, requiring the following external state information:
- I 1) Fan2 _InletPressure pounds per square inch
- Fan2_inletTemperature degrees Rankine
- I Fan2 Inlet Air Flow pounds per second
- 2) Turbine2_InletPressure pounds per square foot
- I Turbine2_InletTemperature degrees Rankine
- I Turbine2_InLet_AirFlow pounds per second
- I 3) Torque pound feet

- i The Engine Rotor2 object manager provides a means of obtaining
- I state information via the:
- I 4) GetFan2DischargeAirFrom
-1 5) Getj'urbine2 DischargeAir From
-1 6) GetRPMFrom.
-i 7) GetVibration From
-1 entries, yielding the following internal state information:
- i 3) Fan2JJDischargePressure pounds per square inch
-I Fan2jDischarge-Temperature degrees Rankine
-i Fan2_Discharge_Air Flow pounds per second

. - 4) Turbine2_DischargePressure pounds per square foot
- I Turbine2_DischargeTemperature degrees Rankine
- I Turbine2_DischargeAirFlow pounds per second
-1 5) RPM rpm
-I 6) Vibration mils

J -1
- I References:
- I Design Documents:
-I none

-I User's Manual:
-i none

- Testing and Validation:
none

INotes:

-- n none
-I

-I Modification History:
-I 25Aug87 cpp created

I Distribution and Copyright Notice:
-I TBD

- Disclaimer:
- 'I T'his work was sponsored by the Department of Defense.
-I The views and conclusions contained in this document are

74 CMU/SEI-87-TR-43

N.*
%4'% %

I solely those of the author s and should not be interpreted as
I representing official policies, either expressed or implied,
I of the Software Engineering Institute. Carnegie Mellon University,
I the U.S. Air Force, the Department of Defense. or the U.S. Government.

-- I

with Standard Engineering_Types;

package Rotor2_ObjectManager in

type Rotor2 is private -- a Rotor2 is an abstraction of an
-- Rotor2 within a Engine-

, type Vibration is range 0.5;
- mils

function New Rotor2 return Rotor2;

-I Description:
-- I This function returns a pointer to a new Rotor2 object
-- I representation. This pointer will be used to identify

I the object for state update and state reporting purposes.
%': -- I

I Parameter Description:
-- I return Rotor2
-- I Pointer to a Rotor2 object.

procedure GiveFan2_ InletAirTo(
A Rotor2 : in Rotor2;
Given_Fan2_InletPreeaure : in StandardEngineeringType.Pressure;
GivenFan2_InletTemperature : in StandardEngineering_Types.Temperature;
GivenFan2_InletAirFlow: in StandardEngmeeringTypesAirFlow

-I Description:
-I Initiates a change in the specified Rotor2 objects
- I state given the Fan2_inlet-Pressure, Fan2InletTemperature,
- I and the Fan.2_InletAirFlow.
- I

- I Parameter Description:
-I ARotor2
- I Identifies the Rotor2 whose state is to be changed.

I Given Fan2_InletPressure
- Is the Fan2_Inlet_Pressure, in pounds per square inch,
- I which is to affect the state of the Rotor2 object.
- I Given_Fan2_Inet_Temperature
- I Is the Fan2_InletTemperature, in degrees Rankine,
- I which is to affect the state of the Rotor2 object.

-I Given Fan2_InletJAir_Flow
- I Is the Fan2 Inlet AirFlow, in pounds per second,
- I which is to affect the state of the Rotor2 object.

procedure GetFan2_DischargeAir_ rom(
ARotor2 : in Rotor2;
ReturningFan2_Discharge_Pressure : out StandardEngineen ngTypes.Pressure;
Returning_Fan2_DischargeTemperature: out Standard_Engineering- Types.Temperature;
Returnmg_Fan2_DischargeAirRFow : out StandardEngineenngTy-pesAirFlow

-I Description:
-i Initiates a report of the speci/.ed Rotor2 object's

CMU/SEI-87-TR-43 75

'A

-- state returning the Fan2_Discharge-Pressure.
-I Fan.2_Discharge iTemperature, and the Fan2-Dis charge Air-Flow.j

-I Parameter Description:
-I A.Rotor2

-I Identifies the Rotor2 whose state is needed.
I- Returning-Fan2jischargePressureI

-I Is the Fan2jDischarge-ressure portion of Rotor2 object's state,
I- in pounds per square inch, which is to be reported on.

-I Return ng-Fan2-Discharge-Temperature
-I Is the Fan2 j)ischarge-Temperature portion of Rotor2 object's state,
-. I in degrees Rankine, which is to be reported on.

-- I Returning-an2-DischargeAirFlow
-I Is the Fan2_DischargeJAir-low portion of Rotor2 abject's state,
I in pounds per second, which is to be reported on.

procedure Give-Turbine2_Inlet_-Air-To(
ARotor2 :in Rotor2;
Given -Turbine2_Inlet_Pressure :in StandardEngineernngypes.Pressure;
GivenTurbine2jlnlet-Temperabsre: in Stndarc&EngineernngTypes.Temperature;
Given Turbine2_InletAirFlow :in Standard EngineeringTypesAir Flow

-I Description:
I Initiates a change in the specified Rotor2 object's

-- sate iventheTurbne~jietressure, Turbine.2-netTemperature,

-I and the Turbine2_InLet_,AirFlow.

I Parameter Description:
-I A-Rotor2
-I Identifies the Rotor2 whose state is to be changed

-I GivenThrbine2_InletPressure
Is the Turbine2_Inlet_Pressure, in pounds per square inch,

-- which is to affect the state of the Rotor2 object.
Given-Turbine2-jrdet-Temperature

-Is the Turbine2_Inlet_Temperature, in degrees Rankeine,
-I which is to affect the state of the Rotor2 object.
- Given_-Turine2nletAir-low

-Is the Turbi ne2_InletJiirFlow, in pounds per second,
-which is to affect the state of the Rotor2 object.

procedure GetTrbe ichage Air rom(
A-Rotor2 :in Rotor2;
Returning-Turbine2.DischargePressure :out Standar&-Engineering-Types.Preasure;
Reuring-urbne2ichrge-Tempraturs: out Standard -Engneering-ypes.Temperature;

ReturbgTine2Discharge.AiFlow : out StandrdEnneeriTypesAirYlow

I Description:
- IInitiates a report of tMe specified Rotor2 object's

state returning the Thrbine2jDischarge-Pressure,
4 Turbine2_Discharge-emperature, and the Turbine2-Discharge-AirFlow.

Parameter Description:
A-Rotor2

-Identifies the Rotor2 whose state is needed.
Returming-Turbine2_Dischargej'ressure

-. Is the Turbine2_Discharge_,ressure portion of Rotor2 object's state,
in pounds per square inch, which is to be reported on.

Returning-Turbine2_Discharge-Temperature
* Is the Turbine2_Discharge-emperature portion of Rotar2 object's state,

in degrees Rankine, which is to be reported on.
ReturngTurbine2DischargeAirFlow

76 CMU/SEI-87-TR-43

1*'

-I Is the Turbine2_Discharge Air-Flow portion of Rotor2 obiect's state,
.. I in pounds per second, which is to be reported on.

function GetRpm_From(
A Rotor2 in Rotor2

return Standard_EngineerigTypes.Rpm;

-1 Description:
- I Initiates a report of the specified Rotor2 object's
- state returning the RPM.

-I Parameter Description:
-I ARotor2
- Identifies the Rotor2 whose state is needed.
- return RPM

- Is the RPM portion of Rotor2 object's state,
-I in rpm, which is to be reported on.

.5

function Get Vibration From(
A Rotor2 : in Rotor2

.) return Vibration;

I Description,
-I Initiates a report of the specified Rotor2 object's
- state returning the Vibration.

-I Parameter Description:
-I A.Rotor2
- Identifies the Rotor2 whose state is needed.
- return Vibration
- Is the Vibration portion of Rotor2 object's state,
- in mils, which is to be reported on.

proedure GiveTorqueTo(
ARotor2 in Rotor2;
GivenTorque in StandardEngmeerngTyps.Torque

- i Description:
- i Initiates a change in the specified Rotor2 object's
- state given the Torque.

- Parameter Description:
- ARotor2
- Identifies the Rotor2 whose state is to be changed
- GivenTorque
- Is the Torque, in pound feet,
- which is to affect the state of the Rotor2 object.

private
type Rotor2_apreseetation; .- incomplete type. defined in

* -., - pacage body
type Rotor2 is eme Rotor2_Represnation;

.. pointer to a Rotor2 representation
end Rotor2Obect ManAgtr,

CMU/SEI-87-TR-43 77

, , .- , ; , - - ,,e , , " ',

-""C.10 Package Flight-Systm

.h -. IModule Name.
"- -- I Flight Systems

-I Module Type:
- I Package Specification

-- I Module Purpose:
- I Executive for flight systems

-I Module Description:
-I. This executive is responsible for processing all flight systems.
-- Processing involves handling all connections between the flight
- I systems and processing each system.
- I

- I References:
I Design Docwsnents;

-I none

- I User's ManuaL
none

-- Testing and Validationm
-I none

- i

-INot.

-Inone
--------------------------------------- --.----

- Modification History.
- 21Aug87 ki created

- I Distribution an Copyrght Notice.
TBD

-i Disclaimner:
- 7 &s work was sponsored by the Department of Defens
- The views and cnclusions cotained in this document are
- solely those of the author(s and should not be interpreted as
- representing official policies, either expressed or implied,

of the Software Engineering Institute, Carnegie Mellon Univeruity,
. the US Air Force, the Department of Defense, or the U.S. Governmen"

* with GlobalTypee;
uns GlobalType.;

package FlightSysma is

proeoduze Update.FhghtSystems (Frame: in Global Typ~n.ExecutionSequence);

.- I Description.
w xecutive which updates all flight systems

-- I Parameter Description.
- frome i the current executing frame

end FlightSysterm;

78 CMU/SEI-87-TR-43

- .. "' t'- ., ,."
% %.

C.11. Package body Flight-Systems

- t Module Name:
-- I Flight Systems

- Module Type:
-. I Package Body

------ -------------------- ---- -- --IModule Description:
I This executive is responsible for processing all flight systems.

I Processing involves handling all connections between the flight
- systems and processing each system.

N -I

I References:
-- I Design Documents:
-I none
-I

- I Testing and Validation:
-i none

-- I Notes
-I none

- I Modification History:
-I 21Aug87 ki created
- I

-I Distribution and Copyright Notice:
-I TBD

-I1 Disclaimer-.
. - I "This work was sponsored by the Department of Defense.

- I The views and conclusions contained in this document are

- I solely those of the author(s) and should not be interpreted as
- I representing official policies, either expressed or implied,
- I of the Software Engineering Institute, Carnegie MeUon University,
- I the U.S. Air Force, the Department of Defense or the U.S. Government."

with FlightSystems_ConnectionManager
with FlightSubsystemName.; use FlightSubsystemNames;

with EngineUpdater,
with System_PowerUpdater;

package body Flight-Systems is

type Active_In_Frame is array (NameOfAFlightSubsystem)
of Boolean;

ItsTime To Do: constant array (GlobaLTypes.ExecutionSequence) of
Active jnFrame:=

(Frame_l_ModulesAreExecuted => (Engine l => (True),
others => (False)),

Frame_2_Modules_Are_Executed => (AcPower => (True),
others => (False)),

. Frame_3_ModulesAreExecuted => (Engine.2 => (True),
others => (False)),

Frame_4_ModulesAreExecuted => (DePower => (True),
others => (False)),

Frame_5_ModuleseAre Executed => (Engine_3 => (True),

CMU/SEI-87-TR-43 79

% % % 'e % le %

others => (False)),
Frame_6_Modules Are Executed => (others => (False)),
Frame_7_ModulesAreExecuted => (Engine_4 => (True),

others => (False)),
Frame_8_ModulesAreExecuted => (others => (False))

procedure UpdateFlightSystems (Frame: in GlobalTypes.ExecutionSequence) is

- Description
- I flight systems executive. Performs process connections and update
- I as an atomic action for each subsystem.

- Parameter Description:
I frame is the current executing frame

- Notes:
-Inone

% begin
%. for ASubsystem in Name-Of A FlightSubsystem loop
0 if ItsTime.TojDo (FrameXASubsystem) then

case ASubsystem is

when DcPower..AcPower =>
Flight.SystemsConnectionManager.

ProcessPowerConnections To (ASubsystem);
System Power_Updater.

UpdateSystem_Power(ASubsystem);

when Engine_l..Engine_4 =>
FlightSystemsConnectionManager.

ProcesiEngineConnectionsTo (ASubsystem);
EngineUpdater.

Update.Engine (ASubsystem);
end case;

end if;
end loop ;

end UpdateF].ight_-Systems;

begin -- flight-systems
null;

end Flight-Systems;

C.12. Package FlightSubsystem_Names

-- I Module Nane:
- i Flight Subsystem Names

-- I Module Type:
0 . .. I Package Specifcation

-I Module Purpose:
-- I Names all subsystems under flight systems

CMU/SEI-87-TR-43

so CKU/SE

-- I Module Description:
- Provides the names of all subsystems under flight systems. The
- I subsystems are contained in systems, e.g., system power and engines,
- I under the scope of flight systems.

- References:::..I Design Documents:
,:i - none

I User's Manua.
-I none

-I Testing and Validation:
-I none

-I Notes:
nI none

-- ---

- I Modification History:
-I 21Aug87 ki created

- -------------------------------------

- I Distribution and Copyright Notice:
-I TBD

- I Disclaimer.
- I "This work was sponsored by the Department of Defense
- I The views and conclusions contained in this document are
- I solely those of the author(s) and should not be interpreted as
-I representing official policies, either expressed or implied,
- I of the Software Engineering Institute, Carnegie Mellon University,
- the U.S. Air Force, the Department of Defense, or the U.S. Government."

package FLightSubsystemNames is

type Name_OfA_FlightSubsystem is (DcPower, Ac_Power,
Enginejl, Engine_2, Engine-3, Engine_4);

q end FlightSubuytemNamees;

NC.13. Package Flight_SystemsConnection Manager

-I Module Name.
- I Flight Systems Connection Manager
- I

-I Module Type:
,I Package Specification

-I
-I Module Purpose:
-I Describes and proceues all connections between flight systems
- ---------------

I - This package is responsible for proccessing all connections between
-I systems at all levels lower than Flight Systems.

-I References:
- I Design Documents:
-i none

-I User's Manuak

CMU/SEI-87-TR-43 81

"- - - ' -- ' - - % , . , %

%I

none

I Testing and Validation:
-. i none
-I

-I Notes:
none

-I Modification History:
-I 21Aug87 Ai created

- I Distribution and Copyright Notice:
-I TBD

I Disclaimer
- "This work was sponsored by the Department of Defense.
-I The views and conclusions contained in this document are
-i solely those of the author(s) and should not be interpreted as
-: representing official policies, either expressed or implied,

of the Software Engineering Institute, Carnegie Mellon University,
i the U.S. Air Force. the Department of Defense, or the U.S. Government.

with FlightSubsystem-anaes; use Flight-SubsystemNaames;

package FhghtSystexsConectionManager is

procedure Process_PowerConnectionsTo

A -Subsystem: in Name_Of -A_-FlightSubeystam);

-- I Description.
-- T'hts procedure processes all connections betwem the system power
-I subsystem and the other systens at the flight executive Level.
_ Processing ofconnectons means to make the subsystem consistent with

Uis environment.
- i i

-- I Parameter Description.
I a subsystem is the subsystem to update

pmocdure ProcessEngineConnections-To
A ASubsystem: in NameOf A_FlightSubystem);

. 'd .-I Description";.

.- This procedur processes all connections between the engine

-- subsystem and the other systems at the flight executive level. Processing
of connections means to makse the subsystem consistent with its

-- environment.

- I Parameter Deecriptiom

-. a subsystem is the subsystem to update

end FhghtSystermConnectonMan ger; 1

82 CMU/SEI-87-TR-43

N A N

C.14. Package body FlightSystemsConnection_Manager
-I0@ **4**0********** e...s....fl................fl..........

-I Module Name:
- Flight Systems Connection Manager

-IModule Type:
-I Package Body
- I

- Mde proedurp below defnes all connections for passing data

- I between flight systems. Each connection is handled by a procedure
-- I call.

-- I References:
- I Design Doeuments:

S--I none
d' ""--I

-- Testing and Validation.
-' none

- I Notes:
-I none

- ------- -------------------------------

. -.- I Modification History:
- 21Aug87 hl created

- I Distribution and Copyright Notice:

-i TBD

I Disclair nr
- This work was sponsored by the Department of Defese.

* - I The views and conclusions contained in this document are
-i solely thos of the authorfs) and should not be interpreted as
- representing official policies, either expresaed or implied,
-I of the Software Engineering Institute, Carnegie Mellon University,
- I the U.S. Air Force, the Department of Defense, or the U.S. Government.

with EngneAggregate;
with Rotor2_Object_Manager,
with AcPowerAggregate; uoe AcPowerAggregate;

package body FlightSyst msConnectaonManager is

" EnginesTu Idg_.Map: array (Engmnes..Engine4) of
AcPower_Aggregate.Integrated Dnve_Name :=

* . Engme I => Idg.,
Engine2 => Idg.2,

" Engine_3 => Idg_3,
Engine_4 => Idg_4);

prooedure Proc.sPower-ConnectionsTo
[,. ASubsystem: in NameOf A_Fhght_Subsystern) is separate

-- Description:
.. I Thi procedure processes all connections between the system power
.. I subsystem and the other systems at the flight executive level.

Processing of connections means to make the subsystem conststent with
ON". I its environment.

_ CMU/SEI-87-TR.43 83

' * P-% ".% , . ".b" . *,***% '***** " * \"t, "% - "I** " 1 ' ''
1 *V~~ I.

- I Parameter Description:
I asubsystem is the subsystem to update

- I Notes:
none

procedure ProcessEngine-ConnectionsTo
A_Subsystem: in FhghtSubsystemNames.Name OfAFightSubsystem)

is separate;

I Description:
SThis pocedure processes all connections between the engine

--, subsystem and the other systems at the flight executive level. Processing
of connections means to make the subsystem consistent with its
environment.

-- I Parameter Description:
%-I asubsystem is the subsystem to update

- I Notes:
-~none

end FlightSystemsConecionManager,

C.15. Separate Procedure body

ProcessEngine_ConnectionsTo

%-- I Moduie Name:
Z - ProcessEngineConnectionTo

- I Module Type:
-i Separate Procedure Body

-I Moduls Purpose:
-i Process connectons between an engine subsystem and all external
,-, systems.

- I Module Description:
- This procedure processes all connections between an engine subsystem
- I- and external systems. Processing of connections means to make
-- I the subsystem consstent with its environment.

-- I Pranmseter Description."
a-subsystem is the subsystem to update

-IReferences:

-- I Design Documents:
--I none

I [Jeer's Manuak
--I none

- Testing and Validation-
-- none

--I Notes:
84 I-none

84 CMU/SEI-87-TR-43

% % % %
L& ieA.

-I Modification History:
%- I 25Aug87 hi created

m~ -I

'.6 --

- Distribution and Copyright Notice:
-I TBD

- I Disclaimer:
- I "This work was sponsored by the Department of Defense.
- I The views and conclusions contained in this document are
- I solely those of the author(s) and should not be interpreted as
- I representing official policies, either expressed or implied,
- I of the Software Engineering Institute, Carnegie Mellon University,

%- I the U.S. Air Force, the Department of Defense, or the U.S. Government."

with AcPower._Aggregate;
with IntegratedDriveObjectManager;
with Engine__Aggregate;
with Rotor2_ObjectManager,
with Standard_EngineerngTypes; use StandardEngineering..Types;

separate (FlightSystems-Connection Manager)

4 procedure ProcessEngine_ ConnectionsTo(
A_.Subsystem: in FlightSubsystemNames.NameOfAFlightSubsystem) is

IntegratedDrive-Energy: Integrated_DriveObjectManager.Energy;

- A local variable is defined to store the value spark when it is read from
- the ignition system. This is a convention, described in the SEI Ada
- Coding Guidelines (currently under development), to restrict the spread of embedded
- function calls, i.e., function calls as parameters within other function calls.

Some-Spark: Ignition.Spark;

function Spark.Conversion(InSpark: in Ignition ObjectManager.Spark)
return Burner.Object..Mansger.Spark is

S-I Descriptiom
"I This function performs a type conversion. It converts

% I the spark from the Ignition to a spark that the
-I Burner-ObjectManagr can accept. This is done
- as an example of how the type conversions can be used to
- connect objects which either communicate through a
-I valve/regulator, or need different grains ofcoarseness of
-I the information.
-I In this case we are assuming that the Igition system
- needs finer information about the spark than does the Burner system.

,-"" -I Parss'neter Description:
*j - I In-Spark is the spark that the Ignition supplies.

- I return Spark is the spark returned for the Burner

case In-Spark is
when 0..2 => RETURN Burner_-ObjectManager.None;
when 3.9 => RETURN BurnerObjectManager.Low;
when 10.20 => RETURN BurnerObjectManager.High,

end cam;
end Spark Conversion;

begin -- ProcessEngneConnections To

4 CMU/SEI-87-TR-43 85

"V r "w ' ' - ""

-All engine external connections are handled in this procedure.
-Each engine has the same kind of connections, but each engine is
-connected to different instances of other objects. Thus all engines
are handled alike here. The different connections are described by

-the engine-aggregate packc ge.

-GetAir-Fromn (the-environment);
-Giveir-To (a diffuser,;

- goes here

4 -Get_Mach.Number_-From (the-airframe);
-GiveMachNumberTo (a-diffuser);

-goes here

-GetDiacharge-Pressure_-From (the -cabinair);
-GetDischargePressure-From (the-air-conditioningsystem);

.W any processing of these two pieces of information goes here
B.' -Give DischargePressureTo (a..bleedvalve);

- goes here

-GetTorqreFrom (the jlydraulic~ystem);
- GetTorque.YFrom (the-o-system);
- GetTorque.Yrom (the .. starter..system);
- GetTorquerom (thefisel system);
- GetTorqueJrom (the-electricalsystem);

- any processing of these live pieces of information goes here
-Give-Torque-To (a-jotor2); -- goes here

For now we are just showing one of these five connections, the one
- fromn the electrical system. For the complete system, all five pieces
- of information would be gathered and processed before passing the
- information to the Rotor2.

Integrated DriveEnergy
Irntegrated Drive Obect _Manager.GetEnergy-From

A-Integrated-Drive => Integrated..DriveGenerators(
% Engne TodgMap(.Subytem))

Roto2-bjectaager.GiveTorqueTo
ARotor2 => Engine..Aggregat.Engine(ASubsystem).TheRotor2,

.% GivenTorque => Torque(Integratedj-DriveEnergy)

- GetFuel-Fiowjrom (the-fuel-system);
* - Give-fuel ,Flow-To (a-burner);

- goes here

-Get Spark from the Ignition and feed it to the Engine Burner

Sorne.Spark:=
Igntion.Get-Spark-rom (Thinjignition(Given..Engine-Name));

BurnerObject.Manager.GiveSpark-To
A-Burner => EnginealAn-Engine).The-Burner,

*86 CMU/SEI-87-TR-43

Given-Spark => SparkConvermon(SomeSpark));

end ProcessEngine_ConnecionsTo;

C.16. Separate Procedure body
ProcessPowerConnectionsTo

-1I Module Name.

-- Process_Power_Connections_To

-I Module Type:
I Separate Procedure Body

-I Module Purpose:
-I process connections between a power subsystem and external systems

-- I Module Description:
- This procedure processes all connections between a power subystem
-I and external systems. Processing of connections means to make
-I the subsystem consistent with its environment.

-I

-I Parameter Description:
-I asubsystem is the subsystem to update

-I References:
- I Design Documents:
-I none

- User's Manuab
-I none

%" -I

%- I Testing and Validation:
-I none
- I

-I Notes:
-I none

- Modification Histor.
- 25Aug87 ki created

- - ----- -------- ------------ ---------

-I Distribution and Copyright Notice:
-I TBD
-I

- 'T"his work was sponsored by the Department of Defense.
I The views and cnclusions contained in this document are

-I solely those of the author(s) and should not be interpreted as
- representing official policies, either expressed or implied,
-I of the Software Engineering Institute, Carnegie Mellon University.
-I the U.S. Air Force, the Department of Defense, or the U.S. Government."

with StandardEngineering_Types: use StandardEngineeringTypee;
with AcPowerAggregate;
with Integrated_Drive_ObjectManager;
with Engine-Aggregate;
with Rotor2_ObjectManager;
with FlightSubsystemNames; use FlightSubsystem_Names;

separate (FLightSystemsConnectionManager)

CMU/SEI-87-TR-43 87

S%

procedure Process Power Connections-To
ASubsvstem: in NameOf AFbghtSubsystem) is

Rotor2_Energy: Rpm;

begin
case ASubsystem is

when AcPower >
for An Engine in Engine l.Engine-4 loop

Rotor2Energy =

Rotor2_Obj ectManager.Get Rpm_ From
A Rotor2 =>

Engine Aggregate Engines Ar._Engine. Th Rotor2

Integrata-Dnve-ObjectManatger Give Energy_ To
A Integrated_D-mve =>

AcPowerAggregate Integrated_ Drie_ G-enerators
Engines To IdgMap, An-Engtiiie

Given Energy =>
I ntegratet Drive Obiect M aniager Enerigy"

Rotor2 - Energy

end loop.

when Dc Power => null

when other* => null

end came

end Process Power Connections To

C.17. Package Engine_ Updater

Module No~m:
Engine tpdater

Module Type:
Package Specilicatwn

-- Module Purpose:

-- Ths package con:ains the qingie n'r'ceaur,-r , r,, : aat :'i
IL MUsat Xwn of an Engine Ii &s the swit inerlo'-i :0 th, Engines

.from the perspertie of the mwi.e

Module De.criptiom
The single operation provided brv this pcane is panameterized rith

-- the nanw of the engine to be upd ,ted 'he operation accowpisses

two sets of Zower-teve operations
Sone to update the statr of the objects at the houndrtes o the

"- engine subsystem which have con netion., 'iterfaes with ohpleri
in other subsystems eat ern to the engine subvstem.

• .and another to update ail objects internal to the engine subsyster
-" based on the onnecwna interfacesi between each other
*-"Specifying the name of the engine ailows the work to be spead out
-. .crou the avadabe processing time, and pushes this decision up

to a higher, more intelligent being 'the exruttie to choose the
order of updating the engines in the engine iubsvstern

- References.
- I Design Documsents:

* 88 CMU/SEI-87-TR-43

5%.

%~ ~ 5q~~~'

-- none

User's ManaL"

Testing and Validation:
none

.otes:

.... I Modiftcation Histor-v:
-- 2 LAugS7 cpp created

-- Distribution and Cop-iright.Notice:
TBD

-- Dtclaiiter.
- - "'This work was spon.sored b- the Department of Defense.

The L:ieu,s and conclusions cruained in this document are
" oiei. those of the authors, and should not be interpreted as
.epresent ng officiai policies, either expressed or implied.

f- t he Software Engineering Institute Carnegie Mellon University.
- .he US Air Force. the Department of Defense, or the U.S. Government."

with FlightSubsystem.Names: -- Provides the type (definition) of the
use FlightSubsystemNames; -- names ofthe engines defined for this

-- system:
- NamesOfAFlightSubsstem

package ngineUpdater is

proedure Update_Engine(GivenEngine_Name: in Name-Of AFlightSubsystem);

. -1 Description.
- Allows the simulation of the Engine Subsystem to be updated
- and made consistent. Then other subsystems dependent upon
- the Engine Subsystem can access the consistent state of the

U - Engine Subsystem. It is an atomic action.

- i Parameter Description.
- Given Engine_Name
-- It's type is declared in FlightSubsystemNames and is used

.- to allow a higher, mom intelligent being (the executive) to
- choose the order of updating the engines in the

-- engine subsystem.

end Enpnee_Updater;

C.18. Package body Eng neUpdater
%"1

I Module Name:
.. i EngineUpdater

-- I Module Type:

-- I Package Body

* S -.:. .,.... .

CMU/SEI-87-TR-43

V%

A191 609 AN O0D (OBJECT-ORIENTED DESIGN) PARAOIGM FOR FLIGHT 2/2
SIMIXATORS (U) CRNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST K J LEE ET AL DEC 87

UNCLASSIFIED CMU/SEI-87-TR-41 ES-TR-8-26 F/G 112 ULIm.....'

"

.. "32

L- 10.011 .
IL25I 11111 1

= U

, ,,, , . _ _

Z -f11 .

-1 111

I

JI

-I te operation provided by this package allows the "user" to

- update the state of an engine, i.a, update the state of the
I objects which simulate the individual parts of the engine.

"I Because this subsystem updater is at the level above the
"I object managers, we have decided that the subsystem updater
- I will internally implement the connection manager at this level
- Isince we don't have to go around and touch the object managers
- I and tell them to update themselves. The object managers update
- I themselves (their state) when the connection is made and the
- I state information is given to them.
-1
-I

I References:
-- I Design Documents:
-I Engine Physical Model Diagram.

- I Testing and Validation:
p none

-I Notew
I THIS IS NOT A FULL IMPLEMENTATION!!!

-I The code is done to demonstrate the process of connecting objects
- in a subsysteym

- The connection manager wasn't implemented at this level
"-I for the reasons stated above in the Module Description.

"I Once the Engine subsystem has been updated, Le., its state
I made consistent, any object whose state is needed by objects

- I in other subsystems can be had by directly accessing the object
-I and getting its state.

I ALl internal routines preform a type conversion on the data

- when the data is transferred from engine object to engine object.
- This is done to allow flexibility and greater potential for reuse
-I of object managers. Another reason for type conversions, which
- I is related to the flexibility issue, is that there may be something
- to model at the connection between the objects, i.e., a valve,
- I regulator, etc., for which an object manager is not necessary.

. - I Therefore, any calculations or transformations which need to occur
I- and be modelled at the connection can be made when the connection

- I between the objects occur.

0 - I Modification History:
- i 24Aug87 cpp created

-- -------- .-.-----..

- Dietriution and Copyright Notice:
-1 TBD

.' - Disclaimer-
- 'This work was sponsored by the Department of Defense-
-1 The views and conclusions contained in this document are
-1 solely those of the author(s) and should not be interpreted as
-1 representing official policies, either expressed or implied,
-1 of the Software Engineering Institute, Carnegie Mellon University,

,", - the U.S. Air Force, the Department of Defense or the U.S. Government."

with StandardEngineeringTyp e;
with EngineAggregate; -- I Provides the type:

90 CMU/SEI-87-TR-43

99 '~ N ~ "

- Engine-Representuation
-1I Provides the object which allows
- I us to specify engine parts:

- I Engines

with Roorl.Object..Manager, - I Provides the type:

-1I Provides the procedure and function:

with Fan. uctObject...Manager, -I Provides the type:

- I Provides the procedure:

with Roor2-Object-Manager, -I Provides the type:

-I Provides the procedure and function:

with Burner-Object;Manager~ - I Provides the type:

-I Provides the procedure and function:

with Exaus..OjectLMaxiager, -I Provides the type:
-1
- I Provides the procedure:
- I

package body Engine-Updater is

prooeduze UpdiateEngneGiven_Engine.Name: in Nane-OCA..Light.Subeystem) in

-I Description.
-I Allows the simulation of the Engine Subsystem to be updated
-I and made consistent. Then other subsystems dependent upon
-I the Engine Subsystem can access the consistent state of the
-I Engine Subsystem. It is an atomic action. The user must
I specify the engine to be updated.

I Th object managers which simulate the various parts of the

I needed to update the subsystems state are the following:-
I Diffuser-.ObjectManager

-I Rotorl-Object-Manciger

FanDuctObject.Manaiger

-I Burner_-ObjectManqger
I Exr-zsLObjectManager

-I The connections between these objects and the state information
-I flowing between the objects were derived solely from the
I Engine Physical Model Diagram shown in SEI Technical Report #CMU/SEI87-TR-43,.

-I An QOD Paradigm for Flight Simulators

-I Paranseter Description.
I Given.Engine..Name

-I It's type is declared in Engine,Names and is used to allow
-I a higher, more intelligent being (the exutive) to
I choose the order of updating the engines in the[-I engine subsystem.

-I Note:
-I This routine models the connection manager for this level.

CMU/SEBI-87-TR43 91

Diffuser Discharge Pressure StandardEngineeringTypes.Pressure;
DiffiserDischargeTemperature: StandardEngineeringTypes. Temperature;
DiffuserDischarge AirFlow Standard..Engineering-ypea.Air -low;

begin

- Model the connection characterized by the dependence of the Rotori
- on the Diffuser for Pneumatic-Energy.

- NOTE, no type conversion is necessary because both types are based
- on Stand ard.Engineering-ypes Package definitions.

Diffuaer-Object ManagerGet -Discharge-.Air-rom(
ADiffuser => EngineAggeat.Eninea(Given.Engine.Name).Theiffuser,
Returning_.DischsrgePressure => Diffuser DischargePressure,
ReturnngDicharge-emperature => Diffuserjischarge-.Temperature,
Returning..Discharge_Air_Flow => DiffuaerDischarge_Air_Fow

RotrlObjectManager.GiveFan_nlet_Air_To(
A-otorl => Engne _rgate.En gines(G ivenEngineName).TheRotor,
GivenFani InletPressure => Difuserischarge-Pressure,
GivenFanlInletTemperature => Diffuser Diacbsrge-Temperature,
GivenFanInlet_AirFlow => Diffsericharge_.Airlow

end Update...Engine;

end Engine_.Updater,

C.19. Package Engine..Aggregate

- I Module Name:
-I Engine.Aagrvgate

-I Module Type.
-I Package Specitcatwn-

- I Module Purpose
I 7This package names the TurboRotori Engines and their parts.

-I Module Deecription.
I A Turbo~otori Engine is an aggregate of Parts:

-I Diffizser,
-I Rotcurl,

I Fan..Duct,
-I Rotor2,
-I Bleed-Val ve,
-I Burner,
-I Exhaust.

-I The parts of a TurboRotori Engine are objects which have state.
-I Each part is managed by it's own object

Imanager. 7Tis package builds the four engines by calling on
-I the various object managers to create the parts. It then stores
-I references to the parts in a constant array indexed by theq
I Name-OfAJlgh-Subsystem which is taken from te

-I FlightSubsystemjNames package. The constant array 4

92 CMUISEI-87-TR-43

-- I is created when the package is elaborated. The constant array is
- I called Engines. A part of an Engine is referenced as:
-I Engines(EnginName).The_<part-kind>
- I For example, the Rotor1 of the second Engine is:
-. Enines(Engin2).TheRotorl

I References:
.- I Design Doctuments:

S-I none

-" ' - I User's ManuaL
-I none

--i Testing and Validation:
, -I none

- I Notes:
- I Optimizations which were implemented: the initialization of Engines
- I occurs at the declaration of the Object instead of the body because

S- I the number of engines and the parts shouldn't change; thus the object
- I was also made a constant array of Engines.

° -I

--- - - ---.----- -------------- -----------

-I Modification History:
-I 20Apr87 cpp created

.. -. - I Distribution and Copyright Notice:
- TBD

- I Disclaimer:
I "This work was sponsored by the Department of Defen

" - I The views and conclusions contained in this document are
-, - solely those of the author(s) and should not be interpreted as

-1 representing official policies, either expressed or implied,
-1 of the Software Engineering Institute, Carnegie Mellon University,
- the U.S. Air Force, the Department of Defens or the U.S. Government.

" with Flight..SubsystemNamee; - I Provides the engine names to

ure Flight_-SubsystemnNanes; -I create instances of the engines
'+.' ", -I in the system.

with Di er..ObjectManager, - I Provides the private type
us Diffser.rObject_ Manager - I Diffuser and a function to

- create a New.Diffuser.
_ with RotorlObjet_Manager, - I Provides the private type

u"s RotorlObject_Manager, - I Rotorl and a function
- I to create a NewRotorl.

with FanDuctObjectManager, - I Provides the private type
ur.. Fan_Duct_Object_Manager, -I Fan_Duct and a function

- I to create a NewFanDuct.
with Rotor2_-Object_Manager, - I Provides the private type
use Rotor2_ObjectManager, - I Rotor2 and a function

I to create a NewRotor2.

I with Bleed_Valve_ObjectManager, - I Provides the private type
u use. Bleed_ValveObjectManager -- I Bleed_Valvue and a function

- I to create a New.Rotor2.
with BnerObject_Manager, - I Provides the private type
uas Burner_ObjectManager; -- I Burner and a function

- I to create a NewBurner.

with Eraut-ObjectManager - I Provides the private type
ure. Exhaust-ObjectManager; - I Exhaust and a function

\, - I to create a New Exhaust.
. pacage Engne._Aggregate is

r.1.

SCMU/SEI-87-TR-43 93

W, W. r %.

if- i - - -

1%

type EngineRepresentation is -- Defines an engine representation
-Nrecord -- as Consisting of.

TheDiffuser Diffuiser,
TheRotori Rotori;
TheFanDuct :FanDuct;
The Rotor-2 :Rotor-2;
The Bleed Valve :BleedValve;
The Burner Burner,
The Exhaust Exhaust;

end record;

- Define an object which holds all 4 engines in the system and
- initialize them (iLe., all their parts).
Engines: constant array (Engine.. Ergine-4) of EngmneRepresentation:

(Engine-.1 =>
TheDiffuser => NewDiffuser,

S TheIotr => New-Rotorl,
Thean_.Duct => NewFanfl uct,
TheftRotor2 => NewRotor2,
The_.BleedValve => NeW..Blee&Vlv,
TheBuner => New -Burner,
The _Exhausit => NewExhaust

Engine-2 =>
Thifue => New -Diffuser,
TheIoor => New-Rotorl,
TheFanDuct => New..anjDuct,
The -Rotor2 => NewRotor2
The_Bleed_-Valve => New ..BleedVle
The..Burner => New...Burner,
TheExhaust => New-Exhaust

Engina..3 =>(
TheDIffsr => NewDiffuser,
TheRotorl => New..Rotorl,
The.,Fan-Duct => Newjan.Duct,
Theflotor2 => NewjlRotor2,
The _Bleed Valve => New _BleedValve,
The..Buzner => New..Buz-ner,
The-Exhaust => New..Exhaust

Engine..4 =>
The Diffuser => NewDiffluser,
The_Rotori => NewRotorl,
The.Yan-.Duct => New._an_Duct,
The_-Rotor-2 => New._Rotor2,
TheBledValve => New_.Blee&_Valve,

*TheBuie-r => Now-.Burner,
The_Exhaust => New_Exhaust

end Engine-.Aggregate;

C.20. Package System PowerUpdater

-1 Module No~e
I System-Power-Updater

-IModule Type:
I Package Specification

* 94 CMUISEa-87-TR-.43

-. I Module Description:
- stub package specification for completion of the Engine system

- I References:
- I Design Documents:
- J none

=- I

- I Testing and Validation:
-I none

-I Notes.
" none

--------------------------------.. -. -------------------------------

-I Modification History:
-I 21Aug87 hl created

------------------- -------

-I Distribution and Copyright Notice:
-J TBD

- I Disclaimer-
- "This work was sponsored by the Department of Defense.
- The views and conclusions contained in this document are
- I solely those of the author(s) and should not be interpreted as
-I representing official policies, either expressed or implied,
- I of the Software Engineering Institute, Carnegie Mellon University,
-- I the U.S. Air Force, the Department of Defense, or the U.S. Government."

with FightSubsystemNamre;

package Systsm_.Power..Updater is

procedure UpdateSystem Power (
A_Subsystsm: in FlightSubeytm._Names.NameOfAFlightSubsystem);

-I Description.
- I Allows the simulation of the Electrical Subsystem to be updated

I and made consistent.
- I
- I Parameter Description.

I asubsystem is the subsystem to update

end System_Power Update,

1'

CMU/SEI-87-TR-43 95

r ak' n.

- - - -- -'--,

References

[II Booch, Grady.
Software Engineering with Ada.
The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

[21 Booch, Grady.
Software Components with Ada.
The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

h.

[3] Hesse, Walter J. and Mumford, Nicholas V. S., Jr.
Jet Propulsion for Aerospace Applications.
Pitman Publishing Corporation, New York, NY, 1964.

90

-I

-"

A.

,"4

A.

.1'

I96 CMU/SEI.87.TR-43

REPORT DOCUMENTATION PAGE
in REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2s. SECLRITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. DECLASSIFICATIONiDOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

' PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-43 ESD-TR-87-206

6& NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

S. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Bc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO. NO. NO.

PTTTqRIIRCH. PA 15213 N/A N/A N/A
11 TITLE Ilnciude Security ClaaMitfication)
AN OOD PARADIGM FOR FLIGHT SIMULATORS

12. PERSONAL AUTHOR(S)

KFN T PP_ FT A[-

13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) -115. PAGE COUNT

FINAL . FROM TO DECEMBER 1987 106
1S. SUPPLEMENTARY NOTATiON

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. OBJECT-ORIENTED, SOFWTARE ENGINEERING, ADA, FLIGHT

SIMULATORS

19. ABSTRACT Conlinue on reverse if necesary and identify by block number)

THIS REPORT PRESENTS A PARADIGM FOR OBJECT-ORIENTED IMPLEMENTATIONS OF FLIGHT SIMULATORS.
IT IS A RESULT OF WORK ON THE ADA SIMULATOR VALIDATION PROGRAM (ASVP) CARRIED OUT BY
MEMBERS OF THE TECHNICAL STAFF AT THE SOFTWARE ENGINEERING INSTITUTE (SEI).

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 12 SAME AS RPT E OTIC USERS U UNCLASSIFIED, UNLIMITED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
IInclude Area Code)KARL SHINGLER (412) 268-7630 SEI JPO

1mi.

N. N

tD~

r I

+,+++... / -

W, t W.

% % . % % Q '

%i %"

% N

IoI • • • • +.,.o • • • +,

